
DYNAMIC ENGINEERING
435 Park Dr., Ben Lomond, Calif. 95005
831-336-8891 Fax 831-336-3840

 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

PMC-Serial-RTN5
Driver Documentation

Revision C
Corresponding Hardware: Revision C

10-2003-0303

 Page 2 of 21 Electronics Design • Manufacturing Services

PmcSer
NT driver for the PMC-Serial-RTN5
Serial Data Interface
PMC Module

Dynamic Engineering
435 Park Drive
Ben Lomond, CA 95005
831- 336-8891
831-336-3840 FAX

This document contains information of
proprietary interest to Dynamic Engineering.
It has been supplied in confidence and the
recipient, by accepting this material, agrees
that the subject matter will not be copied or
reproduced, in whole or in part, nor its
contents revealed in any manner or to any
person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort
to ensure that this manual is accurate and
complete. Still, the company reserves the
right to make improvements or changes in
the product described in this document at
any time and without notice. Furthermore,
Dynamic Engineering assumes no liability
arising out of the application or use of the
device described herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this
equipment in a residential area is likely to
cause radio interference, in which case the
user, at his own expense, will be required to
take whatever measures may be required to
correct the interference.

Dynamic Engineering’s products are not
authorized for use as critical components in
life support devices or systems without the
express written approval of the president of
Dynamic Engineering.

This product has been designed to operate
with PMC Module carriers and compatible
user-provided equipment. Connection of
incompatible hardware is likely to cause
serious damage.

©2005 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revision C. Revised July 20, 2005.

 Page 3 of 21 Electronics Design • Manufacturing Services

Table of Contents

Introduct ion 5

Note 5

Driver Installation 5

Driver Startup 6

IO Controls 6
IOCTL_PMCSER_GET_INFO 6
IOCTL_PMCSER_SET_BASE_CONFIG 6
IOCTL_PMCSER_GET_BASE_CONFIG 7
IOCTL_PMCSER_SET_CHAN_CONFIG 7
IOCTL_PMCSER_GET_CHAN_CONFIG 7
IOCTL_PMCSER_SET_UART_DATA_CONFIG 7
IOCTL_PMCSER_GET_UART_DATA_CONFIG 8
IOCTL_PMCSER_SET_UART_INTEN 9
IOCTL_PMCSER_GET_UART_INTEN 9
IOCTL_PMCSER_SET_UART_MODEM_CONTROL 9
IOCTL_PMCSER_GET_UART_MODEM_CONTROL 9
IOCTL_PMCSER_SET_UART_FLOW_CONTROL_PARAMS 10
IOCTL_PMCSER_SET_UART_FLOW_CONTROL_MODE 10
IOCTL_PMCSER_GET_UART_FLOW_CONTROL_MODE 10
IOCTL_PMCSER_SET_TIMEOUT_CONFIG 10
IOCTL_PMCSER_GET_TIMEOUT_CONFIG 10
IOCTL_PMCSER_RESET_UART 11
IOCTL_PMCSER_CONFIGURE_UART_FIFOS 11
IOCTL_PMCSER_GET_UART_STATUS 11
IOCTL_PMCSER_GET_STATUS 12
IOCTL_PMCSER_REGISTER_EVENT 12
IOCTL_PMCSER_ENABLE_INTERRUPT 12
IOCTL_PMCSER_DISABLE_INTERRUPT 12
IOCTL_PMCSER_FORCE_INTERRUPT 12
IOCTL_PMCSER_GET_ISR_STATUS 13
IOCTL_PMCSER_SET_ALT232_DATA_CONFIG 13
IOCTL_PMCSER_GET_ALT232_DATA_CONFIG 13
IOCTL_PMCSER_RS232_DATA_RDBK 14
IOCTL_PMCSER_SET_SCC_CLOCK_CONFIG 14
IOCTL_PMCSER_GET_SCC_CLOCK_CONFIG 14
IOCTL_PMCSER_SET_SCC_DATA_CONFIG 14
IOCTL_PMCSER_GET_SCC_DATA_CONFIG 14
IOCTL_PMCSER_SET_SCC_SYNC_CONFIG 15
IOCTL_PMCSER_GET_SCC_SYNC_CONFIG 15
IOCTL_PMCSER_SET_SCC_INT_CONFIG 16
IOCTL_PMCSER_GET_SCC_INT_CONFIG 16
IOCTL_PMCSER_SCC_RESETS 16
IOCTL_PMCSER_SCC_MISC_CMD 16

 Page 4 Electronics Design • Manufacturing Services

IOCTL_PMCSER_INIT_SCC_RX 16
IOCTL_PMCSER_INIT_SCC_TX 17
IOCTL_PMCSER_SCC_RX_EN 17
IOCTL_PMCSER_SCC_TX_EN 17
IOCTL_PMCSER_GET_SCC_TREXT_STATUS 17
IOCTL_PMCSER_GET_SCC_SPEC_STATUS 18
IOCTL_PMCSER_GET_SCC_SDLC_STATUS 18
IOCTL_PMCSER_SET_SCC_REG 18
IOCTL_PMCSER_GET_SCC_REG 18
IOCTL_PMCSER_SET_TIME_OUT 18
IOCTL_PMCSER_SET_EXPECTED_BAUDRATE 18

Write 20

Read 20

WARRANTY AND REPAIR 20

Service Policy 21
Out of Warranty Repairs 21

For Service Contact: 21

 Page 5 of 21 Electronics Design • Manufacturing Services

Introduction
The PmcSer driver is a Windows NT driver for the PMC-Serial-RTN5 board
from Dynamic Engineering. This driver can control up to 10 boards in a
system. Each PMC-Serial-RTN5 board has an XR16C854 Quad UART and
a Z85230 Enhanced Serial Communication Controller. A separate Device
Object controls each UART and SCC channel on the PMC-Serial-RTN5
board, and a separate handle references each Device Object. IO Control
calls (IOCTLs) are used to configure the hardware and ReadFile() and
WriteFile() calls are used to transfer data to and from the device over the
PCI bus.

A handle can be opened to a specific board in Win32 by using the
CreateFile() function call and passing in a Symbolic Link name. A Symbolic
Link is the name of the device recognized by Windows. For the PmcSer
driver, symbolic link names are formed as PmcSern_m where n indicates
the zero-based board number and m represents the zero-based channel
number (UART channels are 0..3, SCC channel A is 4, and SCC channel B
is 5) e.g. the SCC channel A on the third board is PmcSer2_4.

ReadFile() and WriteFile() are used to transfer data to/from a specific
board specified by passing the appropriate handle opened via the
CreateFile() function call. The amount of data transferred by either of these
calls is not limited to the device FIFO size, but can be arbitrarily large.

Note
This documentation will provide information about all calls made to the
driver, and how the driver interacts with the device for each of these calls.
For more detailed information on the hardware implementation, refer to the
PMC-Serial-RTN5 device user manual. This version of the driver always
operates the SCC<->IO in half duplex mode.

Driver Installation
There are several files provided in each driver delivery. These files include
PmcSer.sys, PmcSer.reg, DDPmcSer.h, PmcSerDef.h, PmcSerTest.exe,
and PmcSerTest source files.

The PmcSer.sys file is the binary driver file. In order to install the driver,
place this file in your Winnt\system32\drivers directory.
The PmcSer.reg file is the Windows NT registry entry file. This file contains
the modifications to the Windows registry required to allow Windows to
recognize the driver. In order to install the driver, double click on this file
(or right click and select the Merge option in the context menu). This will
merge the PmcSer entries required by the driver into the Windows NT
registry. Windows must be restarted after merging this file into the
registry for the driver to work.

The DDPmcSer.h file is the C header file that defines the Application
Interface (API) to the driver. This file is required at compile time by any

 Page 6 Electronics Design • Manufacturing Services

application that wishes to interface with the PmcSer device driver. It is not
needed by the driver installation.

The PmcSerTest.exe file is a sample Windows NT console application that
makes calls into the PmcSer driver for board 0. It is not required during
the driver installation. Open a command prompt console window and type
PmcSerTest -d0 -? to display a list of commands (the PmcSerTest.exe
file must be in the directory that the window is referencing). The
commands are all of the form PmcSerTest -dn -im where n and m are
the channel number and driver ioctl number respectively. This application
is intended to test the proper functioning of the driver calls, not for normal
operation.

Driver Startup
There are several tasks the PmcSer driver must do when it is started. It
must scan all possible PCI buses to detect every PMC-Serial-RTN5 device in
the system. It must create six Device Objects for every board it finds. It
must initialize each of these Device Objects. It must register callbacks
(Interrupt Service Routines and Deferred Procedure Calls) with Windows.
Finally it must initialize the PMC-Serial-RTN5.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs
refer to a single Device Object in the driver, which controls a single board.
IOCTLs are called using the Win32 function DeviceIoControl(), and passing
in the handle to the device opened with CreateFile(). IOCTLs generally have
input parameters, output parameters, or both. Often a custom structure
is used.
IOCTL_PMCSER_GET_INFO
Function: Returns the current driver version, user switch value, UART
device ID and revision, and Xilinx revision.
Input: None
Output: DRIVER_PMCSER_DEVICE_INFO structure
Notes: This call only accesses the hardware to read the user-switch
setting. All other values are constants or are read and stored during driver
start-up. See DDPmcSer.h for the definition of
DRIVER_PMCSER_DEVICE_INFO.

IOCTL_PMCSER_SET_BASE_CONFIG
Function: Sets configuration parameters in the PMC-Serial-RTN5 base
control register.
Input: PMCSER_BASE_CONFIG structure
Output: None
Notes: Selects the reference clock source(s) for the UART channels and
the SCC, the bus timeout and SCC interrupt enable states, and other

 Page 7 Electronics Design • Manufacturing Services

miscellaneous controls. This call controls the routing of the SCC bi-
directional signals Sync and TRxClk to either input or output drivers as
follows:
SYNCOUT1: SyncA drives auxout0, SyncB drives auxout1
SYNCOUT2: SyncA drives auxout0 and IO 6+, SyncB drives auxout1 and IO
14+
SYNCIN: SyncA is driven by IO 4-, SyncB is driven by IO 12-
TRCOUT1: TRxClkA drives IO 7-, TRxClkB drives IO 15-
TRCOUT2: TRxClkA drives IO 7- and IO 7+, TRxClkB drives IO 15- and IO
15+
TRCIN232: TRxClkA is driven by IO 5-, TRxClkB is driven by IO 13-
TRCINAUX: TRxClkA is driven by auxin0, TRxClkB is driven by auxin1.
The direction of these signals to/from the SCC must be set independently
using the SET_SCC_CLOCK_CONFIG and SET_SCC_SYNC_CONFIG calls. See
DDPmcSer.h for the definition of PMCSER_BASE_CONFIG. See the PMC-
Serial-RTN5 user manual for more information on SCC IO pinouts.

IOCTL_PMCSER_GET_BASE_CONFIG
Function: Returns the configuration of the base control register.
Input: None
Output: PMCSER_BASE_CONFIG structure
Notes: Returns the values set in the previous call.
IOCTL_PMCSER_SET_CHAN_CONFIG
Function: Sets configuration parameters in a PMC-Serial-RTN5 UART
channel control register.
Input: PMCSER_UCHN_CONFIG structure
Output: None
Notes: Controls the the I/O driver receive termination (valid for channels A
and B only) and the PCI bus to UART data interface configuration. See
DDPmcSer.h for the definition of PMCSER_UCHN_CONFIG.

IOCTL_PMCSER_GET_CHAN_CONFIG
Function: Returns the configuration of a PMC-Serial-RTN5 UART channel
control register.
Input: None
Output: PMCSER_UCHN_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMCSER_SET_UART_DATA_CONFIG
Function: Sets the configuration of a UART channel data word and baud
rate.
Input: UART_DATA_CONFIG structure
Output: None

 Page 8 Electronics Design • Manufacturing Services

Notes: Controls the baud rate, number of data bits, number of stop bits
and the parity configuration for a UART channel. Accesses the UART LCR,
DLL, and DLM registers. See DDPmcSer.h for the definition of
UART_DATA_CONFIG. See the XR16C854 data sheet for the UART
internal register descriptions.

IOCTL_PMCSER_GET_UART_DATA_CONFIG
Function: Returns the data configuration of a UART channel.
Input: None
Output: UART_DATA_CONFIG structure
Notes: Returns the values set in the previous call.

 Page 9 Electronics Design • Manufacturing Services

IOCTL_PMCSER_SET_UART_INTEN
Function: Sets the possible interrupt sources for a UART channel.
Input: UART_INT_CONFIG structure
Output: None
Notes: Selects any of seven interrupt sources for a UART channel.
Accesses the UART IER register. See DDPmcSer.h for the definition of
UART_INT_CONFIG. See the XR16C854 data sheet for the UART interrupt
enable register description.

IOCTL_PMCSER_GET_UART_INTEN
Function: Returns the interrupt enable configuration of a UART channel.
Input: None
Output: UART_INT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMCSER_SET_UART_MODEM_CONTROL
Function: Sets the modem control signals and internal loop-back enable
for a UART channel.
Input: UART_MODEM_CONTROL structure
Output: None
Notes: Controls the state of the modem control signals (RTS, DTR) and
internal loop-back signals (OP1, OP2) for a UART channel. Accesses the
UART MCR register. See DDPmcSer.h for the definition of
UART_MODEM_CONTROL. See the XR16C854 data sheet for the UART
modem control register description.

IOCTL_PMCSER_GET_UART_MODEM_CONTROL
Function: Returns the modem control signals for a UART channel.
Input: None
Output: UART_MODEM_CONTROL structure
Notes: Returns the values set in the previous call.

 Page 10 Electronics Design • Manufacturing Services

IOCTL_PMCSER_SET_UART_FLOW_CONTROL_PARAMS
Function: Sets the flow control parameters for a UART channel.
Input: UART_FLOW_PARAMS structure
Output: None
Notes: Sets the Rx and Tx FIFO trigger levels, Rx hysteresis value, and the
Xon and Xoff character values. Accesses the UART FCTR, EMSR, TRG,
XON1, XON2, XOFF1, and XOFF2 registers. See DDPmcSer.h for the
definition of UART_FLOW_PARAMS. See the XR16C854 data sheet for
the UART internal register descriptions. The EMSR and TRG registers are
write only, so there is no corresponding
GET_UART_FLOW_CONTROL_PARAMS for this call.

IOCTL_PMCSER_SET_UART_FLOW_CONTROL_MODE
Function: Sets the flow control mode for a UART channel.
Input: UART_FLOW_CONFIG structure
Output: None
Notes: Controls whether hardware, software, or no flow control is used
for a UART channel, and further details of the selected mode. Accesses
the UART EFR register. See DDPmcSer.h for the definition of
UART_FLOW_CONFIG. See the XR16C854 data sheet for the UART
enhanced function register description.

IOCTL_PMCSER_GET_UART_FLOW_CONTROL_MODE
Function: Returns the flow control mode for a UART channel.
Input: None
Output: UART_FLOW_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMCSER_SET_TIMEOUT_CONFIG
Function: Sets the bus timeout count and data value.
Input: PMCSER_TIMEOUT_CONFIG structure
Output: None
Notes: Sets the timeout count, the number of PCI clocks that the bus
interface will wait before signaling a timeout interrupt and returning the
data specified in the timeout data field. This will only occur when pre-read
data is accessed and there is insufficient data stored to satisfy the request.
See DDPmcSer.h for the definition of PMCSER_TIMEOUT_CONFIG.
IOCTL_PMCSER_GET_TIMEOUT_CONFIG
Function: Returns the bus timeout count and data values.
Input: None
Output: PMCSER_TIMEOUT_CONFIG structure
Notes: Returns the values set in the previous call.

 Page 11 Electronics Design • Manufacturing Services

IOCTL_PMCSER_RESET_UART
Function: Resets the UART device.
Input: None
Output: None
Notes: Resets the UART and restores the data word configuration,
interrupt enables, and FIFO enables that were in effect before the reset.
Other values are returned to the default conditions.

IOCTL_PMCSER_CONFIGURE_UART_FIFOS
Function: Enables and/or resets rx, tx or both of the UART FIFOs.
Input: UART_FIFO_CONTROL enumeration type
Output: None
Notes: Controls whether the UART FIFOs are enabled or disabled. If the
FIFOs are enabled either the transmit, or receive FIFOs can be reset. See
DDPmcSer.h for the definition of UART_FIFO_ CONTROL. An Rx FIFO reset
will not delete any data pre-read from the Rx FIFO.

IOCTL_PMCSER_GET_UART_STATUS
Function: Reads various status values for a UART channel.
Input: None
Output: UART_STATUS structure
Notes: Reads and returns the value of the UART interrupt status register,
line status register, and modem status register as well as the Rx and Tx
FIFO data counts. See DDPmcSer.h for the definition of UART_STATUS.

 Page 12 Electronics Design • Manufacturing Services

IOCTL_PMCSER_GET_STATUS
Function: Returns the status bits in the INT_STAT register.
Input: None
Output: Unsigned long integer
Notes: Reads and returns the value of the INT_STAT register which
indicates the state of the various interrupt sources. This call also clears
the latched UART and SCC interrupt bits as well as the latched timer
interrupt bit. See the bit definitions in the PmcSerDef.h header file for
more information.

IOCTL_PMCSER_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the
handle returned from that call as the input to this IOCTL. The driver then
obtains a system pointer to the event and signals the event when an
interrupt is serviced. The user interrupt service routine waits on this
event, allowing it to respond to the interrupt. In order to un-register the
event, set the event handle to NULL while making this call.

IOCTL_PMCSER_ENABLE_INTERRUPT
Function: Sets the interrupt enable to true for the channel referenced.
Input: None
Output: None
Notes: For a UART channel, this call sets the UART channel control
interrupt enable, leaving all other bit values in the channel control register
the same. For an SCC channel, this call writes to the IEN register for the
channel referenced. This IOCTL is used when interrupt processing is
initiated and in the user interrupt processing function to re-enable the
interrupts after they were disabled in the driver interrupt service routine.

IOCTL_PMCSER_DISABLE_INTERRUPT
Function: Clears the appropriate interrupt enable.
Input: None
Output: None
Notes: Clears the interrupt enable for the channel referenced. This IOCTL
is used when interrupt processing is no longer desired.
IOCTL_PMCSER_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus. This IOCTL is
used for development, to test interrupt processing.

 Page 13 Electronics Design • Manufacturing Services

IOCTL_PMCSER_GET_ISR_STATUS
Function: Returns the interrupt status and the relevant UART or SCC
interrupt status register value read in the last ISR.
Input: None
Output: PMCSER_INT_STAT structure
Notes: The status contains the contents of the INT_STAT register read in
the last driver interrupt service routine execution and the interrupt status
register value for a UART channel or the interrupt pending register of the
SCC if its interrupt was pending in the last ISR. See DDPmcSer.h for the
definition of PMCSER_INT_STAT.

IOCTL_PMCSER_SET_ALT232_DATA_CONFIG
Function: Writes enables and data values for all RS-232 and TTL outputs.
Input: PMCSER_ALT232DAT_CONFIG structure
Output: None
Notes: If an enable for a particular bit is set to a one, the corresponding
data value for that bit supersedes the previously assigned output signal.
There are 20 RS-232 signals controlled by the low 20 bits and the next
two bits control the two TTL AUX outputs.

IOCTL_PMCSER_GET_ALT232_DATA_CONFIG
Function: Returns the alternate data values and enables for all RS-232
and TTL outputs.
Input: None
Output: PMCSER_ALT232DAT_CONFIG structure
Notes: Returns the values set in the previous call.

 Page 14 Electronics Design • Manufacturing Services

IOCTL_PMCSER_RS232_DATA_RDBK
Function: Reads the RS-232 and TTL input data values.
Input: None
Output: unsigned long integer
Notes: Returns the value of the TTL/RS-232 data input bus.

IOCTL_PMCSER_SET_SCC_CLOCK_CONFIG
Function: Sets the clock source and time constant for the baud-rate
generator, the Tx, Rx clock sources, and the clock multiple value. Also
determines the direction and source of the TRxClk signal.
Input: SCC_CLOCK_CONFIG structure
Output: None
Notes: The baud rate is determined by the following formula:
Osc freq/(2 * clock multiple * (time constant + 2)). See DDPmcSer.h for
the definition of SCC_CLOCK_CONFIG.

IOCTL_PMCSER_GET_SCC_CLOCK_CONFIG
Function: Returns the SCC channel's Tx and Rx clock source, rate, etc.
Input: None
Output: SCC_CLOCK_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMCSER_SET_SCC_DATA_CONFIG
Function: Sets the SCC channel’s Tx and Rx data word size, parity, and
encoding.
Input: SCC_DATA_CONFIG structure
Output: None
Notes: The Rx data size can be 5, 6, 7, or 8 bits. Transmit data sizes
less than five bits are possible, but require that the data be pre-formatted
before being written to the transmit data buffer. See the SCC user manual
for the details of this process. The number of stop bits can be 1, 1.5, 2,
or 0. If zero stop bits are selected, this enables synchronous mode. If the
1x clock multiplier is selected, the 1.5 stop bit selection is not allowed.
See DDPmcSer.h for the definition of SCC_DATA_CONFIG.
IOCTL_PMCSER_GET_SCC_DATA_CONFIG
Function: Returns the SCC channel’s Tx and Rx data word size, parity, and
encoding.
Input: None
Output: SCC_DATA_CONFIG structure
Notes: Returns the values set in the previous call.

 Page 15 Electronics Design • Manufacturing Services

IOCTL_PMCSER_SET_SCC_SYNC_CONFIG
Function: Sets the SCC channel’s CRC parameters sync patterns, and
sync type.
Input: SCC_SYNC_CONFIG structure
Output: None
Notes: In mono-sync mode, Sync0 contains the transmit sync and Sync1
contains the receive sync. In bi-sync mode, the sync character is contained
in both fields with the lower bits in Sync0. In all cases the values are right
justified. In SDLC mode, the SDLC flag is loaded automatically and Sync0
contains the secondary address field to compare against the address field
of the SDLC frame. This process is modified if SyncNoLd is true in the
SCC_RX_CONFIG, in this case only the upper four address bits are
compared, so the receiver will respond to a range of 16 addresses. If
external sync mode is selected, the direction of the sync signal is
automatically changed to an input. The base control register must be
configured accordingly. See DDPmcSer.h for the definition of
SCC_SYNC_CONFIG.

IOCTL_PMCSER_GET_SCC_SYNC_CONFIG
Function: Returns the SCC channel’s CRC parameters and sync type.
Input: None
Output: SCC_SYNC_CONFIG structure
Notes: Returns the values set in the previous call except the sync pattern
values.

 Page 16 Electronics Design • Manufacturing Services

IOCTL_PMCSER_SET_SCC_INT_CONFIG
Function: Sets the SCC channel’s interrupt configuration.
Input: SCC_INT_CONFIG structure
Output: None
Notes: The interrupts of the SCC are divided into three groups. The
receive interrupt group consists of the receive character available and
special condition interrupts. The special conditions include overrun,
framing error, end-of-frame (SDLC), and (if enabled) parity error. The
transmit buffer empty is the only transmitter interrupt. Finally the external
interrupts are Tx underrun, break/abort, sync/hunt, CTS, DCD, and baud-
rate-generator count-down to zero. See the SCC user manual for more
information on the interrupt behavior and see DDPmcSer.h for the
definition of SCC_INT_CONFIG.

IOCTL_PMCSER_GET_SCC_INT_CONFIG
Function: Returns the SCC channel’s interrupt configuration.
Input: None
Output: SCC_INT_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_PMCSER_SCC_RESETS
Function: Resets the entire SCC or only the referenced channel.
Input: SCC_RST_SEL enumeration type
Output: None
Notes: After the reset, the configuration values for the affected channel(s)
are restored except the transmitter and receiver are disabled. See
DDPmcSer.h for the definition of SCC_RST_SEL.

IOCTL_PMCSER_SCC_MISC_CMD
Function: Issues the SCC channels DPLL, CRC, and latch-reset
commands. Also controls internal loop-back, auto-echo, and the SCLC
status FIFO enable.
Input: SCC_MISC_CMD structure
Output: None
Notes: See the SCC user manual for information on the various
commands issued. See DDPmcSer.h for the definition of SCC_MISC_CMD.
IOCTL_PMCSER_INIT_SCC_RX
Function: Initializes the SCC channel’s receiver in a particular mode.
Input: SCC_RX_CONFIG structure
Output: None
Notes: See the SCC user manual for information on the various receive
modes. See DDPmcSer.h for the definition of SCC_RX_CONFIG.

 Page 17 Electronics Design • Manufacturing Services

IOCTL_PMCSER_INIT_SCC_TX
Function: Initializes the SCC channel’s transmitter in a particular mode.
Input: SCC_TX_CONFIG structure
Output: None
Notes: See the SCC user manual for information on the various transmit
modes and features. See DDPmcSer.h for the definition of
SCC_TX_CONFIG.

IOCTL_PMCSER_SCC_RX_EN
Function: Start or stop the SCC channel’s receiver.
Input: enable (BOOLEAN type)
Output: None
Notes: When enable is set to true, the referenced receive channel is
started, when enable is false the receiver is stopped.

IOCTL_PMCSER_SCC_TX_EN
Function: Start or stop an SCC channel’s transmitter.
Input: enable (BOOLEAN type)
Output: None
Notes: When enable is set to true, the referenced transmit channel is
started, when enable is false the transmitter is stopped.

IOCTL_PMCSER_GET_SCC_TREXT_STATUS
Function: Returns the SCC channel's Tx/Rx buffer and external status
Input: None
Output: SCC_TREXT_STAT structure
Notes: See DDPmcSer.h for the definition of SCC_TREXT_STAT.

 Page 18 Electronics Design • Manufacturing Services

IOCTL_PMCSER_GET_SCC_SPEC_STATUS
Function: Returns the SCC channel's special conditions status
Input: None
Output: SCC_SPEC_STAT structure
Notes: The ResCode field contains the SDLC residue code. See the SCC
user manual for more information on interpreting this value. See
DDPmcSer.h for the definition of SCC_SPEC_STAT.

IOCTL_PMCSER_GET_SCC_SDLC_STATUS
Function: Returns the SCC channel's SDLC status FIFO data and other
SDLC staus.
Input: None
Output: SCC_SDLC_STAT structure
Notes: See DDPmcSer.h for the definition of SCC_SDLC_STAT.

IOCTL_PMCSER_SET_SCC_REG
Function: Writes the specified value to the SCC channel’s register
specified
Input: SCC_REG_CONFIG structure
Output: None
Notes: A generic register write call for the referenced SCC channel. See
DDPmcSer.h for the definition of SCC_REG_CONFIG.

IOCTL_PMCSER_GET_SCC_REG
Function: Returns a register’s value for the SCC channel referenced.
Input: Register offset (unsigned character)
Output: Register value (unsigned character)
Notes: A generic register read call for the referenced SCC channel.

IOCTL_PMCSER_SET_TIME_OUT
Function: Sets the I/O Timeout value.
Input: Timeout in milliseconds (unsigned long integer)
Output: None
Notes: Sets the time the driver will wait for an IO request to complete
(read or write). If the value is set to zero (reset value), the wait will be
infinite.

IOCTL_PMCSER_SET_EXPECTED_BAUDRATE
Function: Sets the expected baud rate for received data in order to detect
when the transfer has finished.
Input: Baud rate in bits per second (unsigned long integer)
Output: None
Notes: Used to calculate the time the driver will wait for a receive
interrupt while a ReadFile call is in progress. Once the timeout has expired

 Page 19 Electronics Design • Manufacturing Services

(provided the bufferlength requested has not been satisfied), any data left in
the receive FIFO will be read and the call will return with STATUS_SUCCESS.
If the value is set to zero (default), the wait will be infinite. This timeout is
only used for read/receptions and will supersede the timeout value entered
in the previous call.

 Page 20 Electronics Design • Manufacturing Services

Write
Data to be sent from the transmitter is written to the transmit FIFO using a
WriteFile() call. The user supplies the device handle, a pointer to the buffer
containing the data, the number of bytes to write, a pointer to a variable to
store the amount of data actually transferred, and a pointer to an optional
Overlapped structure for performing asynchronous IO. If the number of
bytes requested exceeds the size of the buffer available, the driver will use
interrupts to detect when more data can be written to the device. For a
UART channel, if 16-bit or 32-bit writes are enabled, they will be used to
implement this command. See Win32 help files for details the of the
WriteFile() call.

Read
Received data can be read from the receive FIFO using a ReadFile() call.
The user supplies the device handle, a pointer to the buffer to store the
data in, the number of bytes to read, a pointer to a variable to store the
amount of data actually transferred, and a pointer to an optional
Overlapped structure for performing asynchronous IO. If the number of
bytes requested exceeds the receive FIFO size, the driver will use interrupts
to detect when more data has arrived. Timeouts can be set to terminate
the call when insufficient data is received. For a UART channel, if 16-bit or
32-bit reads are enabled, they will be used to implement this command.
See Win32 help files for the details of the ReadFile() call.

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under
normal use and service and in its original, unmodified condition, for a period
of one year from the time of purchase. If the product is found to be
defective within the terms of this warranty, Dynamic Engineering's sole
responsibility shall be to repair, or at Dynamic Engineering's sole option to
replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is
limited to that set forth herein. Dynamic Engineering disclaims and
excludes all other product warranties and product liability, expressed or
implied, including but not limited to any implied warranties of
merchandisability or fitness for a particular purpose or use, liability for
negligence in manufacture or shipment of product, liability for injury to
persons or property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical
components in life support devices or systems without the express written
approval of the president of Dynamic Engineering.

 Page 21 Electronics Design • Manufacturing Services

Service Policy
Before returning a product for repair, verify as well as possible that the
driver is at fault. The driver has gone through extensive testing and in
most cases it will be cockpit error rather than an error with the driver.
When you are sure or at least willing to pay to have someone help then call
the Customer Service Department and arrange to speak with an engineer.
We will work with you to determine the cause of the issue. If the issue is
one of a defective driver we will correct the problem and provide an
updated module(s) to you [no cost]. If the issue is of the customer’s
making [anything that is not the driver] the engineering time will be invoiced
to the customer. Pre-approval may be required in some cases depending
on the customer’s invoicing policy.

Out of Warranty Repairs
Out of warranty support will be billed. The current minimum repair charge
is $125. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
435 Park Dr.
Ben Lomond, CA 95005
831-336-8891
831-336-3840 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

