
DYNAMIC ENGINEERING
150 DuBois St. Suite C Santa Cruz CA 95060

831-457-8891 Fax 831-457-4793
 http://www.dyneng.com

sales@dyneng.com
 Est. 1988

User Manual

CPCI Receiver Controller
Model CSS1

cPCI 3U 4HP

Revision B
Corresponding Hardware: Revision A

Fab number10-2008-0101

 Embedded Solutions Page 2

cPCI Receiver Controller
3U 4HP

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2008 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Revised 09/29/08

 Embedded Solutions Page 3

Table of Contents

PRODUCT DESCRIPTION 6

Special features: 6

ADDRESS MAP 12

BIT MAPS 13

cPCI_rcvrcntl_BASE 13

cPCI_rcvrcntl_ID 16

cPCI_rcvrcntl_DAC 16

cPCI_rcvrcntl_CHK 18

cPCI_rcvrcntl_CHKref 19

cPCI_rcvrcntl_CHKtst 19

cPCI_rcvrcntl_RSL 20

cPCI_rcvrcntl_RSU 20

cPCI_rcvrcntl_RSC 20

cPCI_rcvrcntl_CSL 22

cPCI_rcvrcntl_CSU 22

cPCI_rcvrcntl_CSC 22

cPCI_rcvrcntl_TMP 23

cPCI_rcvrcntl_ADCC 25

cPCI_rcvrcntl_ADCD 25

cPCI_rcvrcntl_UARTC 27

cPCI_rcvrcntl_UARTrx 29

 Embedded Solutions Page 4

cPCI_rcvrcntl_UARTtx 29

cPCI_rcvrcntl_UARTst 29

cPCI_rcvrcntl_UARTaf 30

cPCI_rcvrcntl_UARTae 31

cPCI_rcvrcntl_TOAL 32

cPCI_rcvrcntl_TOAU 32

cPCI_rcvrcntl_TOAC 33

cPCI_rcvrcntl_TOAC1 33

cPCI_rcvrcntl_TOAC2 33

cPCI_rcvrcntl_TOAC3 33

cPCI_rcvrcntl_AASC 34

cPCI_rcvrcntl_AASLD 35

cPCI_rcvrcntl_COS 35

cPCI_rcvrcntl_TOAFL 37

cPCI_rcvrcntl_TOAFU 37

APPLICATIONS GUIDE 42

Interfacing 42

Construction and Reliability 43

Thermal Considerations 43

Warranty and Repair 44

Service Policy 44
Out of Warranty Repairs 44

For Service Contact: 44

SPECIFICATIONS 45

ORDER INFORMATION 47

 Embedded Solutions Page 5

List of Figures

FIGURE 1 CPCI RECEIVER CONTROLLER RS BLOCK DIAGRAM 7
FIGURE 2 CPCI RECEIVER CONTROLLER RS J5 PIN ASSIGNMENT 38
FIGURE 3 CPCI CALIBRATION SOURCE CS J6 PIN ASSIGNMENT 39
FIGURE 4 CPCI RC RF/IF J7,J8,J9,J10 PIN ASSIGNMENT 40
FIGURE 5 CPCI RC FP CLK J3 PIN ASSIGNMENT 40
FIGURE 6 CPCI RC RP J2 PIN ASSIGNMENT 41

 Embedded Solutions Page 6

Product Description
cPCI Receiver Controller is part of the Dynamic Engineering cPCI compatible
family of modular I/O components.

The cPCI Receiver Controller is a 3U 4HP design optimized for the control of a
specific digital receiver. Multiple SPI buses, A/D, D/A, clock references and
special purpose IO are provided to support the receiver.

The PCI interface is implemented within a Spartan 3 FPGA. The control logic for
the receiver and related interface hardware is also done within the FPGA.

Special features:

• Universal cPCI 3U 4HP1.
• SPI for Receiver Synthesizer “RS”
• SPI for Calibration Source “CS”
• SPI for A/D – 8 channel A/D on board
• SPI for D/A – 8 channel D/A on board plus inverting buffers for attenuation

control, 2 per RF/IF Module connector
• SPI for TMP123 temperature sensor located on board
• 5V power from cPCI used to generated 1.2, 3.3, 2.5, -5, +15, -15, +24
• Fused ±15, ±5, +24 supplied to RS and CS connectors
• 125 MHz clock reference LVDS
• 10 MHz clock reference LVTTL SMA x2
• UART function with programmable baud, parity, stop bits , 1023 deep FIFO,

Differential IO.
• DIP Switch for positive board identification
• PLL – 22393 programmed with local serial bus, two clocks connected to

FPGA
• 7 – RS485 transceivers used for differential IO functions
• 1 – LVDS transceiver used for 125 MHz clock reference out.
• 18 – LVTTL buffered signals – (24 total some duplicated)

1 Most connectors oriented for internal cabling between the Receiver Controller and the

next slice of the Digital Receiver. When cables attached the effective height will be
more than 4 HP.

 Embedded Solutions Page 7

FIGURE 1 CPCI RECEIVER CONTROLLER RS BLOCK DIAGRAM

The Receiver Controller has many features and many details to cover. An
outline of the features and basic capabilities is provided in this section of the
manual. The detailed programming and use information is in the next section.

The diagram is simplified. Most of the interfaces shown have control and data
registers. The register map is direct.

In addition to the information within this manual the PLL programming guide for
the Cypress 22393 may be helpful. The reference software has a routine to
program the PLL and read back the programmed results. The software is
provided as C source code as part of the engineering kit. The C can be
converted to other OS. The Cypress PLL programming pre-processor software
is used to determine the programming stream to send to the PLL for the desired
frequency. The Cypress program is available as a free download from the
Cypress site.

A table is provided later in this manual with the data to send for the “standard”

 Embedded Solutions Page 8

programming of 18.432 MHz. The output of the PLL is used to run the UART
channels for the base design. The second PLL channel is spare for the base
design. If you are changing the 18.432 MHz output to a new frequency it will be
important to know that the reference rate is the same as the Oscillator rate of 50
MHz. By shifting the 18.432 to a new value additional “non standard” baud rates
can be created.

The UARTs are run using the 18.432 MHz clock divided down to the baud rate or
16X the Baud rate for the receiver side. The RS-485 transceivers are rated to 40
MHz. The upper limit on the PLL is 200 MHz. 200/16 => 12.5 MHz would be the
upper limit for the RX side baud rate. The FPGA was not constrained for this
frequency. On a different design with the same VHDL implementation [for the
UART] 10 MHz was tested. If your design requires rates approaching the
maximum please contact us to test the higher rates for you.

Each UART has an associated FIFO – 1023 x 8 – to store characters for
transmission or reception. The Transmit UART will send characters when
enabled as long as data is in the FIFO. The baud rate, parity, stop bits are
programmable. The RX UART shares the definitions for parity etc. and has a
separate enable. When enabled and characters are received the data is stored
into the FIFO.

The design supports DMA within the PCI interface. DMA is not implemented at
this time. With a relatively small amount of work the FIFO’s can be tied into the
DMA arbitration engine to move data automatically within the programmed DMA
transfer.

The Receiver Controller has an 8 position DIP Switch installed. The DIP Switch
is not used for any feature selection. The DIP Switch is available for software
defined purposes. A suggested use is for differentiation of multiple Receiver
Controller boards within the system.

In addition to the PLL and oscillator several DCM’s are used within the FPGA to
create the base frequencies needed to support the SPI buses and other clock
requirements. The FPGA receives 50 MHz from the oscillator. The clock input is
doubled to 100 MHz and then divided to 20 MHz. The 20 MHz is further divided
to create 10 MHz and 2 MHz. The 10 MHz is mux’d with the external 10 MHz
under software control. The selected 10 MHz is used to generate 125 MHz and
the two 10 MHz references driven to the SMA connectors.

The 125 MHz signal is used internally to run the Time Stamp function and is
converted to LVDS for external use.

 Embedded Solutions Page 9

 The internally generated 10 MHz is supplied to a counter in parallel with a
second counter referenced to the external 10 MHz. The software can reset,
start, and set the end count for the internally referenced counter. For example
the software can set a count corresponding to 1 mS of time counting. At the end
of the time the status will indicate that the test is complete. The reference counter
can be read back and compared with the external clock version. The two should
match within a few counts if the external clock is valid. The software can then
choose to use the external reference for the 125 and external 10 MHz clocks.

The 125 MHz is used to run an interesting counter. The counter is 33 bits wide
and made up of a lower and an upper section. The counter is used to track Time
of Arrival. The lowest 5 bits are set to count 0-24 for a divide by 25 function. The
upper bits [28] count when the lower bits reach 24 also using the 125 MHz clock.
The upper and lower halves can be preset, started and stopped.

The count is captured into a FIFO when 1 or more of 8 programmable conditions
occur. There are three external signals [blanking1, blanking 2, 1 PPS] and 1
internal signal [Antenna Array Strobe (AAS)] which can be programmed to
capture on the rising, falling or both edges [Change of State (COS)]. The source
of the trigger is appended to the TOA data and stored into the FIFO. The FIFO is
larger than the PCI bus width making two transfers required. The data is read
from the FIFO and stored into two registers before being buffered onto the PCI
bus. Data integrity is protected with a state-machine that moves the data from
the FIFO to the registers based on the order the reads. Please see the SW
section for more information.

An octal A/D is provided with an SPI bus to manage it. The 14 bit A/D uses a
4.096 V reference to measure the received signals. The A/D is programmed and
read serially. The A/D function is started by writing to a register with the A/D
programming information. The hardware converts the stored data to the SPI
format and sends it to the A/D at a 2 MHz rate. The hardware then recovers the
converted data and stores that into another register. The status is changed from
busy to valid.

Channel 0 and 2 are set with voltage dividers to allow higher voltage inputs to be
used. The divider is approximately 4.45 to allow 18V signals to be measured.
Channel 1 and 3 are the return references for channels 0 and 2. Differential
measurements can be made using 0,1 and 2,3 as pairs. Alternatively single
ended signals can be measured and channels 1 and 3 used for additional inputs.

Channels 4,5,6,7 are also set-up to be used as differential measurements.
Channels 4 and 6 are pulled to 5V via 10K ohms. Channels 5 and 7 are tied

 Embedded Solutions Page 10

through 10KΩ to ground. The system will add a third 10KΩ resistor in parallel to
each differential pair. If the system cables are in place the 5V will be divided in 3
and roughly 1/3 will be measured across the pair. If the system cable is not in
place a 5V reading will happen. If the system cable is in place and the tested
condition [flooding] happens the pair will be shorted together creating a “0”
reading on the differential pair. The on-board resistors can be changed for value
or installation to provide other options. The lines can be used as single ended if
desired.

The Maxim 5593 10 bit DAC is used for the 8 channels of D/A conversion. An
SPI interface converts the data written to the control register to SPI format and
sends it to the DAC. The DAC outputs a voltage corresponding to the
programmed value. The system requires a voltage range of 0 to –3V. Inverting
buffers are used to change the range of the signal. Each of the outputs is
coupled through a 100Ω resistor. Two outputs are tied to each of the 4 RF/IF
module connectors.

 In addition to the data bits there are 4 control bits to select the mode of the
programming. Several features built into the 5593 are interesting. Output on one
channel, output to multiple channels, etc.

TMP123 is a 1.5/2C accurate temperature sensor in a small surface mount
package. TMP123 is mounted near the FPGA toward the outside edge of the
Receiver Controller. The hardware reads the temperature value from the sensor
and stores into a register when tasked by the CPU. The TMP123 is tasked by
sending a command with the SPI bus. After the conversion delay the value is
read back. The temperature is returned as a 12bit plus sign value. Hardware
strips the 0 padding and shifts down to a standard LSB aligned value.
Conversions can be repeated every .5S if desired.

The Calibration Source and Receiver Synthesizer have identical and separate
SPI interfaces. The SPI interface is a 2 bit parallel programmable length
interface with a 20 MHz bit rate. Data is stored into two registers for the upper
and lower values. Data is sent 1-32 bits at a time from each register [2-64
overall]. The data is buffered with ±24 mA LVTTL 3.3V buffers. Clock is low
between transfers. Data stream 1 is valid on the rising edge of the clock and
Data stream 2 is valid on the falling edge of the clock. The enable is asserted
before the first clock and held after the last clock.

The system interfaces need small amounts of power supplied at voltages not
supported by cPCI. The Receiver Controller board generates 24, ±15, and –5V
to support these requirements plus provides them fuse protected as well as fused

 Embedded Solutions Page 11

5V. “Self healing” fuses are used. The FPGA also requires some non cPCI
voltages to operate – 1.2 and 2.5. Switching power supplies are used for the
generated voltages with the exception of the 3.3V rail that is supported with a
linear regulator also from 5V.

 Embedded Solutions Page 12

Address Map
Name Offset Function
cPCI_rcvrcntl_BASE 0x0000 // 0 base control register offset
cPCI_rcvrcntl_ID 0x0004 // 1 ID Register offset

cPCI_rcvrcntl_DAC 0x0008 // 2 DAC Register offset

cPCI_rcvrcntl_CHK 0x000c // 3 control for 10 MHz clock check

cPCI_rcvrcntl_RSL 0x0010 // 4 - RS data 31-0
cPCI_rcvrcntl_RSU 0x0014 // 5 - RS data 63-32
cPCI_rcvrcntl_RSC 0x0018 // 6 - RS control

cPCI_rcvrcntl_CSL 0x0020 // 8 - CS data 31-0
cPCI_rcvrcntl_CSU 0x0024 // 9 - CS data 63-32
cPCI_rcvrcntl_CSC 0x0028 // 10- CS control

cPCI_rcvrcntl_TMP 0x0030 // 12 TMP123 port

cPCI_rcvrcntl_ADCC 0x0038 // 14 ADC Control Register offset
cPCI_rcvrcntl_ADCD 0x003C // 15 ADC Data and Status offset

cPCI_rcvrcntl_UARTC 0x0040 // 16 - UART Control register
cPCI_rcvrcntl_UARTrx 0x0044 // 17 - UART FIFO RX read
cPCI_rcvrcntl_UARTtx 0x0048 // 18 - UART FIFO TX Write
cPCI_rcvrcntl_UARTst 0x004C // 19 - UART FIFO Status
cPCI_rcvrcntl_CHKref 0x0050 // 20 reference clock count read-back

cPCI_rcvrcntl_TOAL 0x005C // 23 - Low Side[4-0]
cPCI_rcvrcntl_TOAU 0x0060 // 24 - high side 27-0
cPCI_rcvrcntl_TOAC 0x0064 // 25 - toa cnt 27-0 [upper side]
cPCI_rcvrcntl_TOAC1 0x0068 // 26 - toa cnt1 27-0 [upper side]
cPCI_rcvrcntl_TOAC2 0x006C // 27 - toa cnt2 27-0 [upper side]
cPCI_rcvrcntl_TOAC3 0x0070 // 28 - toa cnt3 27-0 [upper side]

cPCI_rcvrcntl_AASC 0x007C // 31 - aas 15-0 control port
cPCI_rcvrcntl_AASLD 0x0080 // 32 - aas 31-0 down count reference

cPCI_rcvrcntl_COS 0x0088 // 34 - cos cntl 15-0
cPCI_rcvrcntl_TOAFL 0x008C // 35 - toa FIFO lower [31-0]
cPCI_rcvrcntl_TOAFU 0x0090 // 36 - toa FIFO Upper [40-32 + FIFO status MT, full, Valid]

cPCI_rcvrcntl_UARTaf 0x00A0 // 40 UART FIFO AFL level
cPCI_rcvrcntl_UARTae 0x00A4 // 41 UART FIFO AMT level
cPCI_rcvrcntl_CHKtst 0x00A8 // 42 clock under test count read-back

 Embedded Solutions Page 13

Bit Maps

cPCI_rcvrcntl_BASE

0x0000 // 0 base control register offset
Bits Function
19 SDAT
18 S2
17 SCLK
16 PLL_EN
15–6 unused
5 F_INT
4 M_INT_EN
3-2 unused
1 SPARE2
0 SPARE1

SDAT, S2, SCLK, PLL_EN are used to program the PLL with the bit pattern
generated with the Cypress PLL programming tool. Please note that the read-
back of the SDAT bit is the data from the PLL not this register. Address offset 1
has the register data.

Programming the PLL requires a sequence of simple steps that seem complex
when taken all at once. Taken separately it is reasonable. The engineering kit
has C code for the programming of a file into the PLL.

Step 1: use the Cypress PLL programming tool to create a file set. 50 MHz is the
reference.
Step 2: massage the data within the file to look like the following.

File for “standard 18.432 frequency output on PLL clock A
UCHAR dat0[] = {0x08,
 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x50,
 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
 0x40,
 0x69, 0x60, 0x61, 0x69, 0x60, 0x61, 0x61, 0x60,
 0x61, 0x69, 0x60, 0x61, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

The file produced by the Cypress compiler looks like:

 Embedded Solutions Page 14

Generated by CyClocksRT R3.10.00

Modification Date: 3/5/2008
Comments:
Customer:
FAE:
License #: bm0kd1gd1-ns6ps0cc2

Don't modify file contents after this line:
< Checksum: 20B37826
s CY22393

f 50.000000 ;External Ref
f 0.000000 ;Pll3
f 0.000000 ;Pll2
f 331.776000 ;Pll1, 0x
f 331.776000 ;Pll1, 1
f 331.776000 ;Pll1, 2
f 331.776000 ;Pll1, 3
f 0.000000 ;Pll1, 4
f 0.000000 ;Pll1, 5
f 0.000000 ;Pll1, 6
f 0.000000 ;Pll1, 7 >

*
QP0008* QF2048* G0*
L00064
0001 0010 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0001 0101 0000 0101 0101 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0001 0000 0000 0000 0000 1110 1001 0000 1000*

L00512
0110 1001 0110 0000 0110 0001
0110 1001 0110 0000 0110 0001
0110 1001 0110 0000 0110 0001
0110 1001 0110 0000 0110 0001
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000*

 Embedded Solutions Page 15

C072B*
�0000

To convert the .JED file from the Cypress tool to something compatible with
programming the PLL use the 18.432 converted file as a model. Keep the “08”
and “40” replace the second and third line with hex converted data fields. “0001
0010” become “12” etc. The first 16 bytes are used. Replace the next data block
using the data from the second block after the “L00512”. 24 bytes are used this
time.

Our software communicates with the PLL using a software clock the enable and
data lines. Data is read from the array and shifted out to the device. The data is
later read back to compare against the array and make sure proper
communications are established. Details for programming the CY22393 can be
found in the Cypress data sheet or in the reference software in the engineering
kit.

SPARE1 and SPARE2 are LVTTL outputs tied to the J2 [rear cPCI] connector.
The bits are uncommitted in the CCS1 version. The output follows the input
definition.

M_INT_EN is the board level Master Interrupt Enable. When ‘1’ interrupts can be
generated by the board. When ‘0’ interrupts are masked off.

F_INT is the Force Interrupt bit. When set and the master is enabled the design
will cause an interrupt request to the system. Clear by setting to ‘0’. Default is
‘0’. Main purpose is to allow software programmed interrupts for testing
purposes.

 Embedded Solutions Page 16

cPCI_rcvrcntl_ID

0x0004 // 1 ID Register offset
Bits Function
16 Interrupt
15-8 Xilinx Revision
7-0 DIP Switch

The Xilinx Revision is currently set to 0x03. The revision will be updated as new
features are added to the CCS1 version to allow software differentiation. The
Xilinx revision is also visible from the configuration space within the PCI status.

The DIP Switch is read directly from this port. The value read matches the
settings on the switch. The Switch is defined on the silkscreen for bit and 1,0.

Interrupt is the combination of potential masked interrupt requests from the card.
When set ‘1’ an interrupt request is pending from the card. When ‘0’ no interrupt
is pending. Interrupt is used for determining the source of a request in a shared
interrupt environment.

cPCI_rcvrcntl_DAC

0x0008 // 2 DAC Register offset
Bits Function
16 DAC STAT
15-0 DAC Data

DAC STAT is high when busy and low when ready to receive a new command.

DAC DATA is written to a register and then transmitted to the DAC device.
Reading back from the address retrieves the DAC data sent. The act of writing
to the register causes the SPI controller to begin sending data to the DAC.

The DAC used is a 10 bit device. The command structure is designed to work
with several models including a 12 bit version. The upper 4 bits are control and
the lower 12 are data. Data is MSB aligned and zero’s are added to the LSB side
where shorter control words are used.

Bit 15-12 = Control C3-C0
Bit 11-0 = Data, in the 10 Bit case D11-D2 are valid and D1,D0 are set to 0.

 Embedded Solutions Page 17

C3-C0
0000 outputs unchanged, load register A
0001 outputs unchanged, load register B
0010 outputs unchanged, load register C
0011 outputs unchanged, load register D
0100 outputs unchanged, load register E
0101 outputs unchanged, load register F
0110 outputs unchanged, load register G
0111 outputs unchanged, load register H

1000 plus DATA select output register(s) to update from stored shift register data
1001 load all input registers from shift register output unchanged - parallel value
load
1010 load all input and output registers from common input.

Other control options exist to program slew rates and so forth. Please refer to
the Maxim 5590-5595 data sheet for more information.

The DAC serial interface utilizes a 20 MHz reference frequency. The commands
are 16 bits long. Discounting the overhead within the state-machine and rate
matching, the transmit delay is .8 uS allowing an update rate of 1.25 MHz.
Accounting for overhead and SW latency the maximum rate will be closer to 1
MHz. If you are running at the maximum rate the skew rate may come into play.
The default for the DAC is 1.6 V/uS. If you will be exceeding this rate the Fast
mode will need to be programmed in using the control codes to yield 3.6 V/uS.

The outputs are buffered with inverting op-amps. The range is converted to
provide a 0-M3.3V range for the attenuators. The 10 bit range of the DAC
corresponds to the 0-(-3.3) range on the output.
Vout at the DAC = .5*3.3V * Code/4096 for the forced sense configuration. The
buffer opamps employ a gain of -2 to offset the factor of 1/2 and invert.
VOUT[connector] = -3.3*code/4096 = -.00081* code

Upon reset the DAC can be programmed [with resistor options] to default to 0 or
mid scale. The CSS1 setting is “0”.

 Embedded Solutions Page 18

cPCI_rcvrcntl_CHK

0x000c // 3 counter check on 10 MHz clock
Bits Function
31-28 spare
27 CLOCK_10_SEL
26 cnt_match_int_en
25 CNT CLR
24 CNT EN
23-0 CNT END

To test the availability and frequency of the external 10 MHz clock a dual counter
with common controls is supplied. The reference and test counters are cleared.
The terminal count set and then counting enabled. When the terminal count is
detected both counters are stopped. The test count is compared to the reference
count and if similar the 10 MHz external is valid. If grossly different the signal is
either un-reliable, not present, or at a different frequency.

Load the terminal count into the lower 24 bits with the enable off ‘0’ and the clear
on ‘1’. The base frequency is 10 MHz based on the local oscillator. The count
for a given time can be calculated based on the time and the period of the 10
MHz clock. Reload the count with the clear off ‘0’ and the enable off ‘0’. Reload
again with the enable set ‘1’. This sequence of three writes will clear the count
and then enable with the terminal count loaded into the check register.

When the Count Match changes to a set condition, the results can be read back.

The reference count will be the programmed count +1 due to the match logic
feed-back delay. The test count can be compared to the reference count and
should be within a couple of counts either way. There is some ambiguity due to
phase differences.

cnt_match_int_en when ‘1’ and Count match is set will cause an interrupt
request. Please note the master interrupt enable is also required. When ‘0’
Count Match can still be polled, but no interrupt will be generated from this
function.

 Embedded Solutions Page 19

cPCI_rcvrcntl_CHKref

0x0050 // 20 counter check read-back
Bits Function
31-25 spare
24 Count Match
23-0 Count Internal reference

cPCI_rcvrcntl_CHKtst

0x00A8 // 42 counter check read-back
Bits Function
31-25 spare
24 Count Match
23-0 Count Tested clock

Count Match status. When ‘1’ the reference count matched the programmed
count. The status is repeated on both ports for convenience.

The values from the counters controlled with the counter check register are read
back here. The match bit should be monitored to find the end of the test. The
values can be read and compared. Due to the asynchronous nature of the
external clock the counts may differ by a few lsb’s. If more than a few lsb’s and
still a value then a frequency issue exists with the external clock. If the count is
near or at zero then the clock is not present.

 Embedded Solutions Page 20

cPCI_rcvrcntl_RSL

0x0010 // 4 - RS data 31-0

cPCI_rcvrcntl_RSU

0x0014 // 5 - RS data 63-32

Data to be sent from the SPI port to the Receiver Synthesizer is stored into the
RSL and RSU registers. The transmission is 2 bit parallel. The bits are
transferred from each register in parallel. Data1 is loaded from the RSL register
and Data2 is loaded from the RSU register. Data is sent MSB first. Data is MSB
aligned.

RSU when written causes the transfer to start.

cPCI_rcvrcntl_RSC

0x0018 // 6 - RS control
Bits Function
17 RS_LOCK – read only
16 RS_STAT – read only
15-14 spare
13-8 length
7-6 spare
5 RS_10MHZSEL
4 RS_DACONL
3 Channel Select
2-0 ABC Bits

Prior to writing to the RSU and RSL registers with the data to be sent to the RS
SPI port the port should be initialized. The RSC port controls the length and
ancillary bits associated with the SPI port.

The length is set with 1-32 valid options [written as hex]. The length is for the
number of clocks. 2X data will be transferred [2,4,6..64 total bits sent].

Data1 is sent with the data valid on the rising edge of the clock. Data2 is sent
with the data valid on the falling edge of the clock. The transitions are on the
opposite edge for both Data streams. The enable signal is asserted low prior to
the first clock and held asserted until after the last complete clock. The clock is

 Embedded Solutions Page 21

low between transmissions.

Once a transmission is started with the RSL port the RS_STAT can be read to
check when the transmission is complete. When RS_STAT is ‘1’ the port is
busy.

RS_LOCK reflects the state of the RS_LOCK signal on the RS connector.

RS_10MHZSEL and RS_DACONL are register bits driven with LVTTL buffers to
the RS connector.

The Channel Select and ABC bits are registered and held until a transfer occurs
on the SPI bus. The bits can be changed at any time. The outputs will not
change until a transfer has occurred.

 Embedded Solutions Page 22

cPCI_rcvrcntl_CSL

0x0020 // 8 - CS data 31-0

cPCI_rcvrcntl_CSU

0x0024 // 9 - CS data 63-32

Data to be sent from the SPI port to the Calibration Source is stored into the CSL
and CSU registers. The transmission is 2 bit parallel. The bits are transferred
from each register in parallel. Data1 is loaded from the CSL register and Data2
is loaded from the CSU register. Data is sent MSB first. Data is MSB aligned.

CSU when written causes the transfer to start.

cPCI_rcvrcntl_CSC

0x0028 // 10- CS control

Bits Function
17 CS_LOCK – read only
16 CS_STAT – read only
15-14 spare
13-8 length
7-6 spare
5 CS_10MHZSEL
4 CS_DACONL
3 CS_CHANNEL Select
2-0 spare

Prior to writing to the CSU and CSL registers with the data to be sent to the CS
SPI port the port should be initialized. The CSC port controls the length and
ancillary bits associated with the SPI port.

The length is set with 1-32 valid options [written as hex]. The length is for the
number of clocks. 2X data will be transferred [2,4,6..64 total bits sent]

Data1 is sent with the data valid on the rising edge of the clock. Data2 is sent
with the data valid on the falling edge of the clock. The transitions are on the
opposite edge for both Data streams. The enable signal is asserted low prior to

 Embedded Solutions Page 23

the first clock and held asserted until after the last complete clock. The clock is
low between transmissions.

Once a transmission is started with the RSL port the CS_STAT can be read to
check when the transmission is complete. When CS_STAT is ‘1’ the port is
busy.

CS_LOCK reflects the state of the CS_LOCK signal on the CS connector.

CS_10MHZSEL and CS_DACONL are register bits driven with LVTTL buffers to
the CS connector.

CS Channel Select is a register bit. The bit is driven to the output at the end of
the transmission. The register bit can be changed, and the output will not
change until the transmission occurs.

cPCI_rcvrcntl_TMP

0x0030 // 12 TMP123 port

Bits Function
16 TMP_STAT
15-0 TMP_DATA

Writing to this port causes the hardware to access the TMP123 device and to
update the value held in the read-back register. The data written to the port can
be anything. TMP_STAT will be ‘1’ when busy and ‘0’ when the data has been
stored into the holding register.

Reading from the TMP123 device retrieves the previous conversion value and
starts a new conversion. The conversion takes about 500 mS. The initial value
read will not be a valid temperature value as there are none stored within the
TMP123 to read [after power on reset]. The first access requires two write, wait
for valid, read cycles to get the temperature. A 500 mS delay should be inserted
between the writes to allow the device to complete the requested conversion.

If the temperature is read continuously – every 500 mS or so; the pipeline within
the write – read cycle will not affect the validity of the readings. If the
temperature is checked on a less frequent basis you may want to write, wait for

 Embedded Solutions Page 24

valid, wait 500 mS]. write, wait for valid and then read to get a value that is
current.

The TMP_DATA is 12 bits plus a sign bit. Bit 15 is the sign bit. The LSB is
.0625C. Read the value, right shift 3 places to be LSB aligned. The range of the
device is –25 to + 85 with 1.5C accuracy, and –40 to 125C with ±2C. The data is
in binary 2’s complement form.

 Embedded Solutions Page 25

cPCI_rcvrcntl_ADCC

0x0038 // 14 ADC Control Register offset

Bits Function
7 Start bit
6 SEL2
5 SEL1
4 SEL0
3 SGL/DIF
2 UNI/BIP
1 PD1
0 PD0

cPCI_rcvrcntl_ADCD

0x003C // 15 ADC Data and Status offset

Bits Function
17 ADC SSTRB
16 ADC Status
15-0 ADC Data

Writing to the ADCC will cause an ADC cycle to be performed. The hardware will
take the 8 bits stored in the register and write those to the ADC. The ADC will
respond by converting one of the 8 channels as identified within the 8 bit data
stream and send back 14 bits of data. The upper two bits are set to 0 within the
FPGA. The data is available in the ADCD register.

The Start bit should be set for any command. SEL2..0 select the channel or
channel pair to be converted. SGL/DIF when ‘1’ selects single ended. When ‘0’
selects differential. SEL in this case selects the channel pair and polarity.
UNI/BIP when ‘1’ selects Unipolar operation. When ‘0’ selects BiPolar operation.
PD1,0 select the clock and power down modes. Normally set to “11”.

The table on the next page shows the SEL and channel relationship. Please
note that the Single Ended table has an interesting correlation between SEL and
the channels. The Differential table is more linear.

 Embedded Solutions Page 26

With SGL/DIF = ‘1’

SEL2 SEL1 SEL0 0 1 2 3 4 5 6 7
0 0 0 +
1 0 0 +
0 0 1 +
1 0 1 +
0 1 0 +
1 1 0 +
0 1 1 +
1 1 1 +

 With SGL/DIF = ‘0’

SEL2 SEL1 SEL0 0 1 2 3 4 5 6 7
0 0 0 + -
0 0 1 + -
0 1 0 + -
0 1 1 + -
1 0 0 - +
1 0 1 - +
1 1 0 - +
1 1 1 - +

While the ADC conversion is taking place the Status is set to busy ‘1’, and when
the data is ready to be read, cleared to ‘0’.

SSTRB is a status bit directly from the ADC and can be polled. The status is of
little use to SW and normally not used. It is easy to miss as it is a short pulse.

 Embedded Solutions Page 27

cPCI_rcvrcntl_UARTC

0x0040 // 16 - UART Control register

Bits Function
19 rt_tx1_amt_intlvl_en <
18 rt_rx1_afl_intlvl_en <
17 rt_tx1_amt_int_en <
16 rt_rx1_afl_int_en <
15 UART TX FIFO CLR
14 spare
13 UART TX EN
12 UART RX EN
11 spare
10 UART STOP
9 UART PARITY SEL
8 UART PARITY EN
7-0 UART BAUD RATE

If the PLL is programmed to generate 18.432 MHz the dividers for the UART will
produce 1.152 MHz as a reference. 18.432 divided by the baud rate divider will
produce the RX clock and 1.152 divided by the baud rate divider will produce the
TX reference. The TX rate matches the data rate. The RX rate is 16x the data
rate.

The Baud rate divider is 2(n+1). For 38.4K take 1.152/38.4 => 30. 30/2 – 1 = 14
=> 0x0e for the baud rate factor. The RX side will have 16x this rate to properly
process the received characters.

The Parity Enable when set ‘1’ will add parity to the transmitted character and
check for parity on the RX side. When ‘0’ parity is not added on the TX or
checked on the RX.

Parity Select when set ‘1’ adds odd parity to the character and looks for odd
parity on the Rx side. When ‘0’even parity is used. Only has meaning when
Parity Enable is set.

UART STOP when set adds 2 stop bits to the character. When ‘0’ 1 stop bit is
added. If data remains in the FIFO after a character is sent the remaining data
can be sent immediately after the end of the previous character. Adding an extra
Stop Bit forces 1 extra bit time between characters. If there is no more data to
send the marking state is used.

 Embedded Solutions Page 28

RX EN and TX EN when set ‘1’ allow the state-machines to transmit or receive
data. When ‘0’ data will not be received or sent respectively.

To clear the RX FIFO disable the receiver and read from the FIFO until empty.

To clear the TX FIFO set the TX FIFO CLR bit. The state-machine will
continuously read from the TX FIFO until it is empty.

rt_rx1_afl_int_en <, rt_tx1_amt_int_en < when set ‘1’ enable the latched level
interrupts associated with the UART.

Uart_rx1_afl_int_en when ‘1’ will enable the “Almost Full” interrupt for the UART
receiver. When the level within the UART RX FIFO goes from the state of not
almost full to almost full the interrupt will be triggered. The interrupt is latched
and the state remembered – the interrupt will stay asserted even if the level
becomes not almost full. The interrupt is cleared by writing to the status register.
The concept is to use the programmed Almost full level to “know” how much can
be read. When the interrupt is asserted, the software can do quick loop without
needing status reads to empty the Almost Full amount of data.

rt_rx1_afl_intlvl_en < is similar to uart_rx1_afl_int_en. Both are triggered by the
Almost full condition. The difference is that the rt_rx1_afl_intlvl_en < version is
not registered and conditioned to require the transition from not almost full to
almost full. There is no clear bit associated with this interrupt enable. The mask
or the master interrupt enable can be used to keep this condition from generating
an interrupt.

rt_tx1_amt_int_en < when ‘1’ will enable the “Almost Empty” interrupt for the
UART transmitter. When the level within the UART TX FIFO goes from the state
of not almost empty to almost empty the interrupt will be triggered. The interrupt
is latched and the state remembered – the interrupt will stay asserted even if the
level becomes not almost empty. The interrupt is cleared by writing to the status
register. The concept is to use the programmed Almost empty level to “know”
how much can be written. When the interrupt is asserted, the software can do
quick loop without needing status reads to fill the FIFO with data.

rt_tx1_amt_intlvl_en < is similar to rt_tx1_amt_int_en <. Both are triggered by the
Almost Empty condition. The difference is that the rt_tx1_amt_intlvl_en < version
is not registered and conditioned to require the transition from not almost empty
to almost empty. There is no clear bit associated with this interrupt enable. The

 Embedded Solutions Page 29

mask or the master interrupt enable can be used to keep this condition from
generating an interrupt.

cPCI_rcvrcntl_UARTrx

0x0044 // 17 - UART FIFO RX read

Read from this FIFO to retrieve data stored from the RX UART. Bits 7-0 contain
the data. LW access.

cPCI_rcvrcntl_UARTtx

0x0048 // 18 - UART FIFO TX Write

Write to this address to store data for the TX UART to send. 7-0 contain the data
bits. LW access. 31-24 are don’t care bits.

cPCI_rcvrcntl_UARTst

0x004C // 19 - UART FIFO TX Write

Read from this port for UART status
Bits Function
16 TX FIFO FULL
15 TX FIFO MT
14 spare
13 spare
12 RX FIFO FULL
11 RX FIFO MT
10 RX DN
9-4 Spare
3 tx1ffamt
2 rx1ffafl
1 tx1ffamt_int_stat
0 rx1ffafl_int_stat

TX FIFO FULL when ‘1’ indicates that the TX FIFO has reached capacity and no
new characters will be accepted. When ‘0’ more data can be written; at least 1
open location.

TX FIFO MT when ‘1’ indicates that the TX FIFO is empty and can have the FIFO

 Embedded Solutions Page 30

depth written. When ‘0’ indicates that the FIFO is not empty – has at least one
location filled.

RX FIFO FULL when ‘1’ indicates that the receiver FIFO has all locations filled.
Any new data received prior to data being read will cause an over flow condition.
When ‘0’ at least one location is available.

RX FIFO MT when ‘1’ indicates that no data is stored in the RX FIFO. When ‘0’
at least one location is filled.

RX DN when ‘1’ indicates that the receiver state machine is not working on a
character. Real time status which will be hard to use with software.

Tx1ffamt when ‘1’ indicates that the UART TX FIFO is almost empty. When ‘0’
more than the almost empty level is present.

Rx1FFAFL when ‘1’ indicates that the UART RX FIFO is almost full. When ‘1’
less than the almost full level are stored in the FIFO.

Tx1ffamt_int_stat is the latched status bit for the Almost Empty condition. When
‘1’ the level within the TX FIFO has gone from above or equal to below the
Almost Empty threshold. Clear by writing to this port with this bit set.

Rx1ffafl_int_stat is the latched status bit for the Almost Full condition. When ‘1’
the level within the RX FIFO has gone from less than to equal or greater than the
Almost Empty threshold. Clear by writing to this port with this bit set.

cPCI_rcvrcntl_UARTaf
cPCI_rcvrcntl_UARTaf 0x00A0 // 40 UART FIFO AFL level

15-0 Programmable Almost Full level

The PAF field is set to 16 bits for read-write. Bits 9-0 are used in this design for
the Programmable Almost Full level. The level written to this register is used to
compare against the count from the RX FIFO to determine if the FIFO is Almost
Full or not. When the PAF value written is less than or equal to the count from
the FIFO; the PAF bit is set in the status register and an interrupt can be
generated.

 Embedded Solutions Page 31

cPCI_rcvrcntl_UARTae
cPCI_rcvrcntl_UARTae 0x00A4 // 41 UART FIFO AMT level

15-0 Programmable Almost Empty level

The PAE field is set to 16 bits for read-write. Bits 9-0 are used in this design for
the Programmable Almost Empty level. The level written to this register is used
to compare against the count from the TX FIFO to determine if the FIFO is
Almost Empty or not. When the PAE value written is greater than the count from
the FIFO; the PAE bit is set in the status register and an interrupt can be
generated.

 Embedded Solutions Page 32

cPCI_rcvrcntl_TOAL

0x005C // 23 - Low Side[4-0]

Bits Function
16 Count Enable
15 TOA Reset Enable
4-0 Lower Counter Pre-load bits

cPCI_rcvrcntl_TOAU

0x0060 // 24 - high side 27-0

Bits Function
27-0 Upper Counter Pre-load bits

TOA Reset Enable when set ‘1’ allows a pulse generator to send a 10 clock wide
active high pulse on the TOA RESET Line. The 125 MHz clock is the reference
for an 80 nS wide pulse. The pulse is created when the TOAU register is
accessed.

Count Enable when set ‘1’ enables the TOA counter to operate. When ‘0’ the
counter is stopped and the count is held.

When TOAU is accessed the values loaded into the TOAU and TOAL registers
are loaded into the counter.

The values in the registers are offsets for the initial loop and have no affect once
the counter rolls over.

The lower 5 bit portion of the counter counts from 0-24. The counter when it rolls
over will enable the upper portion of the counter to count. This creates a divide
by 25 on the 125 MHz for a counting rate of 5 MHz on the upper bits, still
referenced to the 125 MHz clock.

The output from the counters is used for the TOA data stored onto a FIFO. See
TOAFL and TOAFU registers.

 Embedded Solutions Page 33

cPCI_rcvrcntl_TOAC

0x0064 // 25 - toa cnt 27-0 [upper side]

Bits Function
27-0 TOA Count

The upper counter data can be read back through this port.

cPCI_rcvrcntl_TOAC1

0x0068 // 26 - toa cnt1 27-0 [upper side]

Bits Function
27-0 TOA CNT1

cPCI_rcvrcntl_TOAC2

0x006C // 27 - toa cnt2 27-0 [upper side]

Bits Function
27-0 TOA CNT2

cPCI_rcvrcntl_TOAC3

0x0070 // 28 - toa cnt3 27-0 [upper side]

Bits Function
31-28 Load Count
27-0 TOA CNT3

TOA CNT[1..3] is a pipelined capture of the counter data. The counter data has
been re-referenced to the PCI clock so there is some ambiguity between the
exact count that was on the counter and the value stored. The counts are stored
based on a special counter. The counter counts to create a 1mS delay between
pipeline captures. The counter runs whenever the counter is enabled. The initial
time to capture is not known exactly as the counter may have been stopped and
started. With three stages the counts between stages can be checked against
the expected to make sure the counter is advancing properly. The ATP test
software does this.

The Load Count provides a reference count to the number of times the pipeline

 Embedded Solutions Page 34

has been stored. The count clears when the counters are disabled. It is
suggested that this value be polled until the count is 3. The counter disabled and
the pipeline read.

The data is stored into the pipeline 1 => 2 => 3 so the comparison should be 2-3
and 1-2. .001/(1/5000000) => 5000 => 0x1388 for the expected delta. A 5%
margin is more than enough to compensate for the frequency domain change.

This feature is available mainly as an engineering test feature. It is not
necessary to use in normal operation.

cPCI_rcvrcntl_AASC

0x007C // 31 - aas 15-0 control port

Bits Function
4 AAS CNTL LD
3 spare
2 AAS CNTL EN
1 AAS CNTL S
0 AAS CNTL R

The AAS toggle output can be used with several different modes. Each interacts
with the other. For example if the AAS bit is forced low and then put into
automatic mode the bit will stay low until the next automatic mode change and
toggle to high.

AAS CNTL R when set ‘1’ acts as a RESET input and forces the output bit low.
When ‘0’ the control is in the inactive state.

AAS CNTL S when set ‘1’ acts as a SET input and forces the output bit high.
When ‘0’ the control is in the inactive state.

AAS CNTL EN when set ‘1’ enables the counter. The counter is held when not
enabled. Enable when set also enables automatic mode. The S and R controls
can override the EN for the output. When set and R and S are ‘0’ the output will
toggle based on when the counter underflows. The rate is programmable based
on the count loaded.

The counter also requires the upper counter enable to be set [from the TOA
counter] for the counter to decrease by 1. The reference clock is 125 Mhz.
Essentially the count is the number of times the lower bits have sequenced
through on the TOA counter [0-24] for a basically 5 Mhz rate.

 Embedded Solutions Page 35

AAS CNTL LD when set forces the counter to the initial value. The counter
counts down and then reloads the value again. The Enable is not required to
load. The LD signal should be released before going to the run state.

cPCI_rcvrcntl_AASLD

0x0080 // 32 - aas 31-0 down count reference

Bits Function
31-0 AAS Count Initial Value

The count is loaded when the LD signal is set or when the counter underflows.

cPCI_rcvrcntl_COS

0x0088 // 34 - cos cntl 15-0

Bits Function
16 gnd
15 FIFO Load Signal
14 toafifo_valid_int_en
13-12 spare
11 TOA FIFO read enable
10-8 spare
7 AAS RISing
6 AAS FALLing
5 BLANK2 RISing
4 BLANK2 FALLing
3 BLANK1 RISing
2 BLANK1 FALLing
1 OnePPS RISing
0 OnePPS FALLing

Each of the bits can be enabled ‘1’ or disabled ‘0’ independently. The 33 MHz
clock is used to check for a Change of State on each bit [1PPS, BLANK1,
BLANK2 and AAS]. When the change is from a ‘0’ state to a ‘1’ state and the
RISing bit is set the TOA is captured and stored into a FIFO. Similarly if the
signal of interest changes from ‘1’ to ‘0’ and the FALLing bit is set the TOA is
captured into the same FIFO. If both are set the TOA is captured for any change
in state,

 Embedded Solutions Page 36

The FIFO is 32 deep and 41 wide to capture the TOA [33 bits] plus the COS
output status bits.

toafifo_valid_int_en when ‘1’ enables the interrupt based on the valid data being
available in the output register.

If FIFO LOAD Signal is enabled ‘1’ the FIFO LOAD signal is generated when
data is written to the TOA FIFO. The pulse is 10 clocks wide and referenced to
the 125 MHz for an 80 nS wide pulse. The signal is buffered to LVTTL levels and
located on J2.

TOA READ Enable when set ‘1’ enables the FIFO read state-machine to auto
move data from the FIFO to a pair of holding registers for unified reading of the
data. The state-machine senses when data is available to be read and when
data has been read. The MT signal from the FIFO is used for the available side
and the lower FIFO being read for the room in the register signal. TOA FIFO
Valid is set when data is in the output registers. The status is available in the
TOAFU register.

 Embedded Solutions Page 37

cPCI_rcvrcntl_TOAFL

0x008C // 35 - toa FIFO lower [31-0]

Bits Function
31-0 TOA FIFO data

cPCI_rcvrcntl_TOAFU

0x0090 // 36 - toa FIFO Upper [40-32 + FIFO status MT, full, Valid]

Bits Function
11 TOA FIFO VALID
10 TOA FIFO FULL
9 TOA FIFO MT
8 aas rising
7 aas falling
6 blank2 rising
5 blank2 falling
4 blank1 rising
3 blank1 falling
2 onePPS rising
1 onePPS Falling
0 TOA Count MSB

The TOA FIFO VALID bit can be polled along with the FIFO FULL and FIFO MT
status bits without affecting the FIFO data. When the VALID bit is set the Count
and COS bits are valid and stored into the two FIFO holding registers. The upper
register should be read first. The lower register triggers the next move of data
into the holding registers.

 Embedded Solutions Page 38

Receiver / Synthesizer Interface Pin Assignment

Name Pin [J5]
+5 V 1
+5 V 1 4
-5 V 2
GND 1 5
+1 5 V 3
GND 1 6
-1 5 V 4
V_ TUNE_ OUTP 1 7
+2 4 V 5
V_ TUNE_ OUTN 1 8
RS_ L OCK 6
GND 1 9
RS_ DACONL 7

2 0
RS_ SPID2 8

2 1
RS_ 1 0 MHZSEL 9

2 2
CHAN_ SEL RS 1 0

2 3
RS_ ENABL E 1 1

2 4
RS_ SPID1 1 2

2 5
RS_ CL OCK 1 3

FIGURE 2 CPCI RECEIVER CONTROLLER RS J5 PIN ASSIGNMENT

 Embedded Solutions Page 39

Calibration Source Interface Pin Assignment

Name Pin [J6]
+5 V 1
+5 V 1 4
-5 V 2
GND 1 5
+1 5 V 3
GND 1 6
-1 5 V 4
V_ TUNE_ OUTP 1 7
+2 4 V 5
V_ TUNE_ OUTN 1 8
CS_ L OCK 6
GND 1 9
CS_ DACONL 7

2 0
CS_ SPID2 8

2 1
CS_ 1 0 MHZSEL 9

2 2
CHAN_ SEL CS 1 0

2 3
CS_ ENABL E 1 1

2 4
CS_ SPID1 1 2

2 5
CS_ CL OCK 1 3

FIGURE 3 CPCI CALIBRATION SOURCE CS J6 PIN ASSIGNMENT

 Embedded Solutions Page 40

RF/IF Interface Pin Assignment

Name Pin [J7,8,9,10]
+5 V 1
-5 V 6
+5 V 2
ATTENUATION B 7
GND 3

8
GND 4
CHAN SEL 9
ATTENUATION A 5

FIGURE 4 CPCI RC RF/IF J7,J8,J9,J10 PIN ASSIGNMENT

Front Panel Clock Interface Pin Assignment

Name Pin [J7,8,9,10]
1 2 5 MHZ P 1
1 2 5 MHz N 6

2
7
3
8
4
9
5

FIGURE 5 CPCI RC FP CLK J3 PIN ASSIGNMENT

 Embedded Solutions Page 41

Rear Panel cPCI J2 Interface Pin Assignment

Name Pin [J2]
TMP FL D A P C2
TMP FL D A N C1
TMP FL D B P B2
TMP FL D B N B1
BL ANK1 E3
BL ANK2 E4
1 PPS E5
CL OCK_ 1 0 _ IN D6
CL OCK_ 1 0 _ RTN D7
ABC_ 0 P C8
ABC_ 0 N C9
ABC_ 1 P D8
ABC_ 1 N D9
ABC_ 2 P E8
ABC_ 2 N E9
AAS_ P C1 0
AAS_ N C1 1
SDI_ P D1 0
SDI_ N D1 1
SDO_ P E1 0
SDO_ N E1 1
TOA_ RESET E1 2
SPARE_ 1 C1 3
SPARE_ 2 D1 3
FIFO_ L OAD E1 3

FIGURE 6 CPCI RC RP J2 PIN ASSIGNMENT

J13 and J14 are vertical SMA connectors with 10 MHz available. The signals are
driven with TTL levels.

 Embedded Solutions Page 42

Applications Guide

Interfacing

Some general interfacing guidelines are presented below. Do not hesitate to
contact the factory if you need more assistance.

Installation
The PMC is mounted to the cPCI Receiver Controller prior to installation within
the chassis. For best results: with the cPCI bracket installed, install the PMC at
an angle so that the PMC front panel bezel penetrates the cPCI bracket then
rotate down to mate with the PMC [PnX] connectors.

There are four mounting locations per PMC. Two into the PMC mounting bezel,
and two for the standoffs near the PMC bus connectors.

Start-up
A third party PCI device cataloging tool will be helpful to check that the VendorID
and CardID are “seen” by the OS.

Watch the system grounds. All electrically connected equipment should have a
fail-safe common ground that is large enough to handle all current loads without
affecting noise immunity. Power supplies and power consuming loads should all
have their own ground wires back to a common point.

Power all system power supplies from one switch. Connecting external
voltage to the cPCI Receiver Controller when it is not powered can damage it, as
well as the rest of the host system. This problem may be avoided by turning all
power supplies on and off at the same time.

 Embedded Solutions Page 43

Construction and Reliability

The cPCI Receiver Controller is constructed out of 0.062 high temp ROHS
compliant material. Gold has been used for plating rather than Tin for improved
performance over time. “leaded or unleaded” components can be used along
with solder choices. Dynamic Engineering can support both processes.

Surface mounted components are used. The connectors are through hole
soldered for the cables and compression fit for the cPCI.

Thermal Considerations

The cPCI Receiver Controller is built with “commercial” parts. The parts can be
upgraded to provide an Extended Temperature “ET” version of the design. The
connectors and other components are ET rated in either case.

The base design is fairly low powered and will not require a lot of cooling.
External draw on the power supplies or IO signals can add a significant power
load on the Receiver Controller. Forced air cooling is recommended in this case.

During T&I it is recommended to read the temperature sensor and see what
temperature is registering on the board. If anywhere close to 70C forced air
should be implemented. The MTBF will be longer at cooler temperatures [up to a
point]. Remember that the TMP123 is measuring the temperature on the FAB
near the FPGA. Other parts may be warmer and likely are hotter than the
surface temperature of the PCB. Getting the temperature reading below 50C
would provide quite a bit of margin and add to the MTBF. If this is not possible
then the ET version is recommended as that adds 15C to the top end.

 Embedded Solutions Page 44

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected
unit is at fault. Then call the Customer Service Department for a RETURN
MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured with the
RMA number clearly written on the outside of the package. Include a return
address and the telephone number of a technical contact. For out-of-warranty
repairs, a purchase order for repair charges must accompany the return.
Dynamic Engineering will not be responsible for damages due to improper
packaging of returned items. For service on Dynamic Engineering Products not
purchased directly from Dynamic Engineering contact your reseller. Products
returned to Dynamic Engineering for repair by other than the original customer
will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The current
minimum repair charge is $100. Customer approval will be obtained before
repairing any item if the repair charges will exceed one half of the quantity one
list price for that unit. Return transportation and insurance will be billed as part of
the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
InterNet Address support@dyneng.com

 Embedded Solutions Page 45

Specifications
Logic Interfaces: PCI Interface 33/32

Access types: PCI target accesses. DMA can be added.

CLK rates supported: 125 LVDS based on 10 MHz from rear panel or local osc, 10
MHz [LVTTL] on SMA(2), Programmable UART Baud rates

Power Fused 24V, ±15V, ±5V supplied to connectors from on-board
power supplies. +5 used from cPCI bus.

SPI Internal SPI used for A/D, D/A, Temperature sensor. HW
implemented with simple register access. External SPI
supplied for two buses. 2 bit parallel implementation with
programmable length [1-32 bits], 20 MHz.

IO Additional miscellaneous and program specific IO are
supported with a combination of RS-485, LVTTL, and LVDS.

A/D 8 channels of A/D are supported. The A/D is programmable
for single ended or differential operation, Uni or Bipolar
encoding, Easy to use register based access with
conversion status.

D/A 8 channels of D/A are supported. Each channel is
separately programmable. The output is buffered with an
inverting opamp to provide a 0-M3.3V range. Register
based programming with conversion status. Multi and single
channel access.

Temperature The TMP123 temperature sensor is mounted near the FPGA
and accessed with an SPI bus. Hardware takes care of the
conversion. Software requests data, hardware retrieves the
data and provides status for completion.

UART TX and RX UART functions with RS-485 IO are provided.
The PLL is used to generate the 18.432 reference clock and
a software programmable baud rate generator used to select
transmit and receive rates. 1023 x 8 buffer for TX and RX.

 Embedded Solutions Page 46

TOA Time of Arrival counter provided using 125 MHz reference
clock. COS on 4 signals to trigger TOA storage into a 32 x
41 FIFO. 33 bits of time tag plus status from COS
generator.

DipSwitch 8 position switch supplied with register access. Switch can
be used to differentiate between boards when more than one
Receiver Controller is in the same system or for SW defined
purposes.

FLASH FPGA program is stored into FLASH memory with a JTAG
header to allow for field updates and new programs.

Revision The FPGA VHDL revision is programmed into a register to
allow for SW detection of different revisions. When the base
design changes a new CardID will be assigned.

Software Interface: register mapped IO

Initialization: registers are initialized to 0.

Interface: Registers are R/W with the exception of Status bits.

Dimensions: 3U 4HP [minus internal cabling]

Construction: High Temp ROHS compliant Multi-Layer Printed Circuit
board, Through Hole and Surface Mount Components.
Standard processing with leaded components and solder.
–ROHS option for ROHS compliant components and solder.

 Embedded Solutions Page 47

Order Information
standard temperature range –0 +70øC
extended temperature range –40 +85C
cPCI-Rcvr-Cntl-CSS1 3U 4HP cPCI card A/D, D/A, Temperature,

UART, Two SPI buses, Clock references,
Fused Power
http://www.dyneng.com/cpci_rcvr_cntl.html

-CC Conformal Coating is available as an option.
-ROHS Add for ROHS processing.
-ET Add Extended Temperature

All information provided is Copyright Dynamic Engineering

