
DYNAMIC ENGINEERING
150 DuBois St. Suite C, Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

hlnk_base
&

hlnk_chan

Linux Driver Documentation

Revision A
Corresponding Hardware: Revision A

10-2009-0101
Corresponding Firmware: Revision A

 Embedded Solutions Page 2 of 12

hlnk_base & hlnk_chan
Linux Device Drivers for the
ccPMC-HOTLink PMC Module
6-Channel HOTLink Interface

Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2009 by Dynamic Engineering
Other trademarks and registered trademarks are
owned by their respective manufactures.
Manual Revision A. Revised April 17, 2009

 Embedded Solutions Page 3 of 12

Table of Contents
Introduction...4
Note ..4
Driver Installation...4
Driver Startup ...5
IO Controls ..6

IOCTL_HLNK_BASE_GET_INFO..6
IOCTL_HLNK_BASE_LOAD_PLL_DATA ..6
IOCTL_HLNK_BASE_READ_PLL_DATA ..6
IOCTL_HLNK_CHAN_GET_INFO ...7
IOCTL_HLNK_CHAN_SET_CONFIG ..7
IOCTL_HLNK_CHAN_GET_CONFIG..7
IOCTL_HLNK_CHAN_GET_STATUS ...7
IOCTL_HLNK_CHAN_SET_FIFO_LEVELS..7
IOCTL_HLNK_CHAN_GET_FIFO_LEVELS ...7
IOCTL_HLNK_CHAN_GET_FIFO_COUNTS ..8
IOCTL_HLNK_CHAN_RESET_FIFOS...8
IOCTL_HLNK_CHAN_WRITE_FIFO ...8
IOCTL_HLNK_CHAN_READ_FIFO ...8
IOCTL_HLNK_CHAN_SET_485_CONFIG ..8
IOCTL_HLNK_CHAN_GET_485_CONFIG..8
IOCTL_HLNK_CHAN_GET_485_STATUS ...9
IOCTL_HLNK_CHAN_GET_485_STATUS ...9
IOCTL_HLNK_CHAN_RESET_485_FIFOS ..9
IOCTL_HLNK_CHAN_WRITE_485A_FIFO ..9
IOCTL_HLNK_CHAN_READ_485A_FIFO ..9
IOCTL_HLNK_CHAN_WRITE_485B_FIFO ..9
IOCTL_HLNK_CHAN_READ_485B_FIFO ..9
IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT ...10
IOCTL_HLNK_CHAN_ENABLE_INTERRUPT ...10
IOCTL_HLNK_CHAN_DISABLE_INTERRUPT ..10
IOCTL_HLNK_CHAN_FORCE_INTERRUPT..10
IOCTL_HLNK_CHAN_GET_ISR_STATUS ...11

Write ...11
Read ...11

Warranty and Repair..12
Service Policy ...12

Out of Warranty Repairs..12
For Service Contact:..12

 Embedded Solutions Page 4 of 12

Introduction

The hlnk_base and hlnk_chan drivers are Linux device drivers for the ccPMC-HOTLink
from Dynamic Engineering. The HOTLink board has a Spartan3-4000 Xilinx FPGA to
implement the PCI interface, FIFOs and protocol control and status for six HOTLink
channels. There is also a programmable PLL with two clock outputs, one for the
HOTLink reference frequency and one for the RS-485 16x reference frequency. Each
channel has an 4k x 32-bit receive FIFO and a 2k x 32-bit transmit FIFO for the
HOTLink interface and two 1k x 32-bit FIFOs for the two RS-485 bidirectional interface
lines.

When the hlnk_base module is installed, it interfaces with the PCI bus sub-system to
acquire the memory and interrupt resources for each device installed. An hlnk bus is
created for each device and six channel devices are allocated. The interrupt is
assigned and the address space partitioned for the six channel devices. When the
hlnk_chan driver is installed, it probes the hlnk bus and finds and initializes the six
channel devices for each board. It allocates read and write list memory to hold the DMA
page descriptors that are used by the hardware to perform scatter-gather DMA.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the HOTLink user manual (also
referred to as the hardware manual). The HOTLink base and channel drivers were
developed on Linux kernel version 2.6.18. If you are using a different version, some
modification of the source code might be required.

Driver Installation

The source files and Makefiles for the drivers and test application are supplied in the
driver archive file hot_link.tar.bz2. Copy the directory structure to the computer where
the driver is to be built. From the top-level directory type “make” to build the object files
then type “make install” to copy the files to the target location (must be root for this to
succeed) (/lib/modules/$(VERSION)/kernel/drivers/misc/ for the driver and /usr/local/bin/
for the test app). After installation, you can type “make clean” to remove object files and
executables.

A load_hlnk script is provided that will load the base driver, parse the /proc/devices file
for the device’s major number, count the number of entries in the /sys/bus/hlnk/devices/
directory to determine the number of boards installed, create the required number of
/dev/hlnk_base_x (where x is the zero based board number) device nodes, load the
channel driver, find that major number and create the required number of
/dev/hlnk_chan_y device nodes as well.

The Application Program Interface (API) for the drivers and relevant bit defines for the
control/status registers on the PMC-HOTLink are defined in the C header files

 Embedded Solutions Page 5 of 12

hlnk_base_api.h and hlnk_chan_api.h. The user_app source code will provide
examples of how to use the driver calls to control the hardware.

Driver Startup

Install the hardware and boot the computer. After the drivers have been installed run
the load_hlnk script to start the drivers and create the device interface nodes.

Handles can be opened to a specific board by using the open() function call and
passing in the appropriate device names.

Below is example code for opening handles for device dev_num.

#typedef long HANDLE
#define INPUT_SIZE 80

HANDLE hhlnk_base;
HANDLE hhlnk_chan[HLNK_BASE_NUM_CHANNELS];

char Name[INPUT_SIZE];
int i;
int dev_num;
int chan_num;

do
{
 printf("\nEnter target board number (starting with zero): \n");
 scanf("%d", &dev_num);
 if(dev_num < 0 || dev_num > NUM_HLNK_DEVICES)
 printf("\nTarget board number %d out of range!\n", dev_num);
}
while(dev_num < 0 || dev_num > NUM_HLNK_DEVICES);

sprintf(Name, "/dev/hlnk_base_%d", dev_num);
hhlnk_base = open(Name , O_RDWR);
if(hhlnk_base < 2)
{
 printf("\n%s FAILED to open!\n", Name);
 return 1;
}

chan_num = dev_num * HLNK_BASE_NUM_CHANNELS

for(i = 0; i < HLNK_BASE_NUM_CHANNELS; i++)
{
 sprintf(Name, "/dev/hlnk_chan_%d", chan_num + i);
 hhlnk_chan[i] = open(Name, O_RDWR);
 if(hhlnk_chan[i] < 2)
 {
 printf("\n%s FAILED to open!\n", Name);
 return 1;
 }
}

 Embedded Solutions Page 6 of 12

IO Controls

The driver uses ioctl() calls to configure the device and obtain status. The parameters
passed to the ioctl() function include the handle obtained from the open() call, an integer
command number defined in the API header files and an optional parameter used to
pass data in and/or out of the device. The ioctl commands defined for the PMC-
HOTLink are listed below.

IOCTL_HLNK_BASE_GET_INFO

Function: Returns the Driver version, Xilinx revision, Switch value, Instance number, and PLL
device ID.
Input: None
Output: HLNK_BASE_DRIVER_DEVICE_INFO structure
Notes: Switch value is the configuration of the on-board dip-switch that has been set by
the user (see the board silk screen for bit position and polarity). The PLL device ID is
the device address of the PLL device. This value, which is set at the factory, is usually
0x69 but may alternatively be 0x6A. See hlnk_base_api.h for the definition of
HLNK_BASE_DRIVER_DEVICE_INFO.

IOCTL_HLNK_BASE_LOAD_PLL_DATA
Function: Loads the internal registers of the PLL.
Input: HLNK_BASE_PLL_DATA structure
Output: None
Notes: The PLL internal register data is loaded into the HLNK_BASE_PLL_DATA
structure in an array of 40 bytes. Appropriate values for this array can be derived from
.jed files created by the CyberClock utility from Cypress Semiconductor.

IOCTL_HLNK_BASE_READ_PLL_DATA
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: HLNK_BASE_PLL_DATA structure
Notes: The register data is output in the HLNK_BASE_PLL_DATA structure in an array
of 40 bytes.

 Embedded Solutions Page 7 of 12

IOCTL_HLNK_CHAN_GET_INFO

Function: Returns the driver version and instance number of the referenced channel.
Input: None
Output: HLNK_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of HLNK_CHAN_DRIVER_DEVICE_INFO in the
hlnk_chan_api.h header file.

IOCTL_HLNK_CHAN_SET_CONFIG
Function: Writes a configuration value to the channel control register.
Input: Value of channel control register (unsigned long integer)
Output: None
Notes: See hlnk_chan_api.h for the relevant channel control bit definitions. Only the
bits in CHAN_CNTRL_MASK can be controlled by this call.

IOCTL_HLNK_CHAN_GET_CONFIG
Function: Returns the channel’s control configuration.
Input: None
Output: Value of the channel control register (unsigned long integer)
Notes: Returns the values of the bits in CHAN_CNTRL_READ_MASK.

IOCTL_HLNK_CHAN_GET_STATUS
Function: Returns the channel’s status value and clears the latched bits.
Input: None
Output: Value of channel status register (unsigned long integer)
Notes: The latched bits in CHAN_STAT_LATCH_MASK will be cleared if they are set
when the status is read.

IOCTL_HLNK_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: HLNK_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are initialized to the default values _ transmit FIFO size and _
receive FIFO size respectively when the driver initializes. The FIFO counts are
compared to these levels to determine the value of the CHAN_STAT_TX_FF_AMT and
CHAN_STAT_RX_FF_AFL status bits. Also, if the control bits
CHAN_CNTRL_URGNT_IN_EN and/or CHAN_CNTRL_URGNT_OUT_EN are set,
these levels are used to determine when to give priority to an input or output DMA
channel.

IOCTL_HLNK_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: HLNK_CHAN_FIFO_LEVELS structure
Notes:

 Embedded Solutions Page 8 of 12

IOCTL_HLNK_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive FIFOs.
Input: None
Output: HLNK_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmit FIFO data and four for the receive
FIFO data. These are counted in the FIFO counts. That means the transmit count can
be a maximum of 2049 32-bit words and the receive count can be a maximum of 4100
32-bit words.

IOCTL_HLNK_CHAN_RESET_FIFOS
Function: Resets one or both HOTLink FIFOs for the channel
Input: HLNK_CHAN_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmit or receive FIFO or both depending on the input parameter
selection.

IOCTL_HLNK_CHAN_WRITE_FIFO
Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_HLNK_CHAN_READ_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_HLNK_CHAN_SET_485_CONFIG
Function: Writes a configuration value to the channel RS-485 control register.
Input: Value of channel RS-485 control register (unsigned long integer)
Output: None
Notes: See hlnk_chan_api.h for the relevant channel RS-485 control bit definitions.
Only the bits in CHAN_485_CNTRL_MASK can be controlled by this call.

IOCTL_HLNK_CHAN_GET_485_CONFIG
Function: Returns the channel’s RS-485 control configuration.
Input: None
Output: Value of the channel RS-485 control register (unsigned long integer)
Notes: Returns the values of the bits in CHAN_485_CNTRL_MASK.

 Embedded Solutions Page 9 of 12

IOCTL_HLNK_CHAN_GET_485_STATUS
Function: Returns the channel’s RS-485 status register value.
Input: None
Output: Value of channel RS-485 status register (unsigned long integer)
Notes:

IOCTL_HLNK_CHAN_RESET_485_FIFOS
Function: Resets one or both RS-485 FIFOs for the channel
Input: HLNK_CHAN_485_FIFO_SEL enumeration type
Output: None
Notes: Resets the RS-485A or RS-485B FIFO or both depending on the input
parameter selection.

IOCTL_HLNK_CHAN_WRITE_485A_FIFO
Function: Writes a 32-bit data-word to the RS-485A FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to write data to the RS-485A FIFO.

IOCTL_HLNK_CHAN_READ_485A_FIFO
Function: Returns a 32-bit data word from the RS-485A FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to read data from the RS-485A FIFO.

IOCTL_HLNK_CHAN_WRITE_485B_FIFO
Function: Writes a 32-bit data-word to the RS-485B FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to write data to the RS-485B FIFO.

IOCTL_HLNK_CHAN_READ_485B_FIFO
Function: Returns a 32-bit data word from the RS-485B FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to read data from the RS-485B FIFO.

 Embedded Solutions Page 10 of 12

IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT

Function: Inserts the calling process into the interrupt wait queue until an interrupt
occurs.
Input: Time-out value in jiffies (unsigned long integer)
Output: None
Notes: This call is used to implement a user defined interrupt service routine. It will
return when an interrupt occurs or when the delay time specified expires. If the delay is
set to zero, the call will wait indefinitely. The delay time is dependent on the platform
setting for jiffy, which could be anything from 10 milliseconds to less than 1 millisecond.
The DMA interrupts do not use this mechanism; they are controlled automatically by the
driver.

IOCTL_HLNK_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run to re-enable interrupts
after an interrupt occurs.

IOCTL_HLNK_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_HLNK_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

 Embedded Solutions Page 11 of 12

IOCTL_HLNK_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: HLNK_CHAN_ISR_STAT structure
Notes: The Status field is the status that was read in the last interrupt service routine
that serviced an enabled user interrupt. The TimedOut field of the structure will be true
if the time-out value set in IOCTL_HLNK_CHAN_WAIT_ON_INTERRUPT was
exceeded. The interrupts that deal with the DMA transfers do not affect this value.

Write

HOTLink transmit data is written to the device using the write command. A handle to
the device, a pointer to a pre-allocated buffer that contains the data to write and an
unsigned long integer that represents the number of bytes of data to write are passed to
the write call. The driver will obtain physical addresses to the pages containing the data
and will set-up a list of page descriptors in its list memory. The physical address of the
first list entry is written to the board, which performs a bus-master scatter-gather DMA to
transfer the data.

Read

HOTLink received data is read from the device using the read command. A handle to
the device, a pointer to a pre-allocated buffer that will contain the data read and an
unsigned long integer that represents the number of bytes of data to read are passed to
the read call. The driver will obtain physical addresses to the buffer memory pages and
will set-up a list of page descriptors in its list memory. The physical address of the first
list entry is written to the board, which performs a bus-master scatter-gather DMA to
transfer the data.

 Embedded Solutions Page 12 of 12

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchandisability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

