

Win10 Driver Manual

SpaceWire Monitor

Dynamic Engineering
150 DuBois St. Suite B&C

Santa Cruz, CA 95060
(831) 457-8891

www.dyneng.com
sales@dyneng.com

Est. 1988

Manual Revision 01p1
Revision Date 06/07/2023

SpaceWire Monitor Win10 Driver Manual

ii

SpaceWire Monitor

Copyright© 1988-2023 Dynamic Engineering.

This document contains information of proprietary interest to Dynamic Engineering. It has been supplied in
confidence, and the recipient, by accepting this material, agrees that the subject matter will not be copied or
reproduced, in whole or in part, nor its contents revealed in any manner or to any person except to mee the

purpose for which it was delivered.
All other trademarks are the property of their respective owners.

Cautions and Warnings

The electronic equipment described herein generates, uses, and can radiate radio
frequency energy. Operation of this equipment in a residential area is likely to cause
radio interference, in which case the user, at their own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without express written approval from the president of
Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

SpaceWire Monitor Win10 Driver Manual

iii

Table of Contents
Design Revision History ... 1
Manual Revision History .. 1
Product Description .. 2
Software Description .. 2
Test Suite ... 2
Logger .. 2
Driver Installation ... 3
Uninstallation .. 3
API ... 3

IOCTL Definitions ... 7
DE_GET_BD_INFO .. 7
DE_CONFIG_PT .. 7
DE_GET_STATS .. 8
DE_REG ... 9

Additional Software Information ... 9
Invocation of de_mon ... 9

Debug ... 11
Warranty and Repair .. 12

Service Policy ... 12
Out-of-Warranty Repairs ... 12
Contact ... 12

Glossary ... 13

Figures
No table of figures entries found.
Tables
Table 1: Design Revision History ... 1
Table 2: Manual Revision History .. 1
Table 3: Header Files ... 2

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 1 of 14

Design Revision History

Table 1: Design Revision History

Revision Date Description

Manual Revision History

Table 2: Manual Revision History

Revision Date Description
1.1 6/7/23 Original

NOTE: Dynamic Engineering has made every effort to ensure that this manual is accurate and
complete; that being said, the company reserves the right to make improvements or changes
to the product described in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the application or use of the device
described herein.

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 2 of 14

Product Description
The SpaceWire-Monitor (Monitor) is a 2-channel device used to monitor two SpaceWire devices using two
standard SpaceWire cables. This driver was developed as a Windows Kernel Driver using the KMDF.

Each channel has 64K internal FIFO plus a 512K external FIFO. While possible to write/read from the FIFO
directly with the API, the driver implementation utilizes DMA. Furthermore, as this device is a monitoring
device, write functionality is not implemented (other than by using an IOCTL to write to the FIFO for test
purposes).

Software Description

The Dynamic Engineering SpaceWire Monitor uses the Win10 KMDV version 1.0 driver. This consists of two
modules, a base driver and a channel driver module, that can be loaded using the .inf file.

This package comes with a Monitor User App which is used to test the hardware as well as provide an
example of how to interface with the device through software:

Table 3: Header Files
File Name Description

ioctle.h

Defines serves as the primary API for the device and
demonstrates how to use the IOCTL calls defined in the files
below, as well as different options for reading from the device
depending on the use case.

SpaceWireMonitorBasePublic.h Defines many of the data structures used by the Ioctl calls for
the base device.

SpaceWireMonitorChanPublic.h
Defines many of the data structures used by the Ioctl calls for
the channel device.

DE/DE_WinDeviceApi.h
Defines helper functions that can be used to enumerate and
open the devices, and simplifies calls to the windows framework
for device interfacing.

Test Suite

The UserApp is used in-house to validate the hardware and provides a more extensive example of how to
interact with the hardware. The UserApp was written in C/C++. Some of the test suite tests require a
SpaceWireBK device installed in the same system, but those tests are automatically suppressed when this
device is not present. The purpose of this is to test the HW within a single system and abstract away some of
the complexity for the testing team.

Logger

Logging the data can be done through the provided test but no data is sent through the application. The
logging assumes that data is coming to the card through some other application or device and merely serves to
capture the data as well as the packet descriptors and write that data to disk. The data is written in binary
format, and the logger functions convert those binary files to readable txt files when logging is complete.

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 3 of 14

Driver Installation
Driver Installation is simple, first right-click on the SpaceWireMonitorBase.inf file and click “install”, this will load
the base driver automatically and enumerate the channels in the Window’s Device Manager. Once this is
installed, follow the same step by right clicking on the SpaceWireMonitorChan.inf file and click “Install”.

Once the driver is installed on a system, the driver files are automatically copied to the “Window’s Store” (i.e., a
special directory where windows stores driver files). The driver will automatically load every time the computer
is booted.

Uninstallation
Open the device manager and navigate to the “SpaceWireMon Device” element, expand the tree down by
pressing the “>” arrow. There you will see the base and channel device. Right-click on the channel device and
select “uninstall device” (IMPORTANT – once this uninstall is selected a window will pop up, check the box that
says “Delete the driver software installed for this device” (this removes the driver from the windows store). For
the second channel this pop-up will not offer the same box as the software is already removed from the store.
Finally, do the same thing with the base driver – again remembering to check the box as the base driver is a
separate piece of software that has been copied to the Window’s Store.

API
The primary API for the device can be located in the Ioctl.h file, and there are some additional ioctl calls that
can be found in the SpaceWireMonitorBase/ChanPublic.h files. One of the most useful of those is the
IOCTL_DE_REG_CMD which takes a DE_REG_CMD as both input and output and allows you to read/write to
any register using the offsets defined in SpaceWireMonitorChanPublic.h.

/**
 * @brief Get information for the channel
 * @param handle handle to monitor channel
 * @param chan_device_info struct filled by routine
 * @return true on success
*/
bool GetChanInfo(HANDLE handle, SPWRMON_CHAN_DRIVER_DEVICE_INFO & chan_device_info);

/**
 * @brief Get the channel configuration
 * @param handle handle to monitor channel
 * @param config struct filled by routine
 * @return true on success
*/

bool GetChanConfig(HANDLE handle, SPWRMON_CHAN_CONFIG& config);

/**
 * @brief Set the channel configuration
 * @param handle handle to monitor channel
 * @param config struct filled by routine
 * @return true on success
*/
bool SetChanConfig(HANDLE handle, SPWRMON_CHAN_CONFIG& config);

/**
 * @brief Reads packet length from the channels packet length fifo
 * @param handle handle to monitor channel

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 4 of 14

 * @param val ULONG filled by routine
 * @return true on success
*/
bool ReadPacketLenFifo(HANDLE handle, ULONG &val);

/**
 * @brief Resests all the channels fifos
 * @param handle handle to monitor channel
 * @return true on success
*/
bool ResetFifos(HANDLE handle);

/**
 * @brief Gets the channels fifo levels
 * @param handle handle to monitor channel
 * @param val SPWRMON_CHAN_FIFO_COUNTS struct filled by routine
 * @return true on success
*/
bool GetFifoCounts(HANDLE handle, SPWRMON_CHAN_FIFO_COUNTS& val);

/**
 * @brief Writes data to the channels data fifo - used for testing
 * @param handle handle to monitor channel
 * @param val ULONG written to fifo
 * @return true on success
*/
bool WriteDataFifo(HANDLE handle, ULONG& val);

/**
 * @brief Reads data from the channels data fifo
 * @param handle handle to monitor channel
 * @param val ULONG filled by routine
 * @return true on success
*/
bool ReadDataFifo(HANDLE handle, ULONG& val);

/**
 * @brief Disables the monitor - monitor is enabled by configuring the channel
 * @param handle handle to monitor channel
 * @return true on success
*/
bool DisableMonitor(HANDLE handle);

/**
 * @brief Forces an interrupt on the channel (this call already enables the interrupt in the driver)
 * @param handle handle to monitor channel
 * @return true on success
*/
bool ForceInterrupt(HANDLE handle);

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 5 of 14

/**
 * @brief Register an event to be signaled when an interrupt occurs
 * @param handle handle to monitor channel
 * @param event object to be signaled
 * @return true on success
*/
bool RegisterMonEvent(HANDLE handle, HANDLE * event_handle);

/**
 * @brief Enables the master interrupt for the channel
 * @param handle handle to monitor channel
 * @return true on success
*/
bool EnableInterrupt(HANDLE handle);

/**
 * @brief Disables the master interrupt for the channel
 * @param handle handle to monitor channel
 * @return true on success
*/
bool DisableInterrupt(HANDLE handle);

/**
 * @brief Reads all data on the device, if small packets are being monitored
 * this can drop packets because of DMA overhead
 * @param handle handle to monitor channel
 * @param data empty vector, cleared, resized, and filled by routine
 * @return bytes read or negative on error
*/
uint32_t ReadDevice(HANDLE handle, std::vector<char>& data);

/**
 * @brief Reads all data on the device, if small packets are being monitored
 * this can drop packets because of DMA overhead
 * @param handle handle to monitor channel
 * @param data buffer pointer filled by routine
 * @param len of desired data - routine will not read more than this but may read less
 * @return bytes read or negative on error
*/
uint32_t ReadDevice(HANDLE handle, char * data, uint32_t len);

/**
 * @brief Reads all data on the device, but will optimize read size to avoid dropping packets.
 * This can be slower due to the optimization and timeout required for the optimization.
 * @param handle handle to monitor channel
 * @param data empty vector, cleared, resized, and filled by routine
 * @param size of desired data - routine will not read more than this but may read less
 * @param timeout_ms timeout in milliseconds if less data than size is read
 * @return bytes read or negative on error
*/
uint32_t ReadDeviceDMAOptimized(HANDLE handle, std::vector<char>& data, ULONG size, ULONG timeout_ms);

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 6 of 14

/**
 * @brief Reads any available packet lens, and associates descriptor with timestamp.
 * @param handle handle to monitor channel
 * @param packet_lens vector of packet lens filled by routine, will add data to existing data (not
clear)
 * @param timestamps vector of timestamps filled by routine, will add data to existing data (not clear)
 * @return number of descriptors read or negative on error
*/
uint32_t ReadPacketLensWithTimestamps(HANDLE handle, std::vector<ULONG>& packet_lens,
std::vector<std::chrono::steady_clock::time_point>×tamps);

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 7 of 14

IOCTL Definitions

DE_GET_BD_INFO
- Functions: Gets the relevant board information for each port. This IOCTL takes a struct pointer as a

parameter and then fills it.
- Input: de_spwr_rev_t *
- Output: de_spwr_rev_t *
- Notes: typedef struct de_spwr_rev {

 /* FPGA design ID and revision */
 uint8_t des_major;
 /* Only applicable to BK versions, always 0
 * for legacy versions */
 uint8_t des_minor;
 uint8_t des_type;
 /* bits 7-0 reflect user switch settings */
 uint8_t dips;
 uint16_t max_speed[DE_NUM_SPWR_PTS];
 uint32_t rx_fifo_len[DE_NUM_SPWR_PTS];
} __attribute__((packed)) de_spwr_rev_t;

DE_CONFIG_PT
- Function: Gets/Sets the port configuration
- Input: de_spwr_cfg_t *
- Output: de_spwr_cfg_t *
- Notes:

/* Ioctl/configuration operations */
typedef enum de_op {
 DE_GET_OP = 0,
 DE_SET_OP = 1,
 /* Read/Modify/Write used for register
 * ioctls */
 DE_RMW_OP = 2,
} de_op_t;

/* Ioctl/configuration operations */
typedef enum de_op {
 DE_GET_OP = 0,
 DE_SET_OP = 1,
 /* Read/Modify/Write used for register
 * ioctls */
 DE_RMW_OP = 2,
} de_op_t;

/* DMA priorities for accessing
* I/O FIFOs */
typedef enum de_dma_pri {
 /* Default, R/W same priority */
 DE_SAME_PRI = 0,
 /* DMA Reads prioritized */
 DE_RD_PRI = 1,

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 8 of 14

 /* DMA Writes prioritized */
 DE_WR_PRI =

/* Operating parameters per SpaceWire port */
typedef struct de_spwr_cfg {
 /* Of type de_opt_t */
 uint32_t op;
 /* Of type de_opt_t, Wrap back or External I/O */
 uint32_t mode;
 /* Timeout in seconds for blocking reads
 * If 0, then block forever */
 uint32_t blocking_rd_to;
 /*This stores the original number before conversion to jiffies */
 uint32_t blocking_rd_to_sec_stored;
 /* Timeout in seconds for time code ioctl reads
 * interrupt driven, if 0, block forever */
 uint32_t tc_rd_to;
 /* Of type de_dma_pri_t */
 uint8_t dma_pri;
 /* Disable packet mode
 * If this mode is utilized both transmit and receive ports must
 * be operating in this mode */
 uint8_t disable_pkt_mode;
 /* Set to enable auto link start, this allows
 * other end of link to initiate link start
 * Note, this bit is overloaded when operating in monitor mode
 * 0 = Link down on start, 1 = link up on start */
 uint8_t auto_start;

} __attribute__((packed)) de_spwr_cfg_t;

DE_GET_STATS
- Function: Gets Stats for the port
- Input: de_spwr_stats_t *
- Output: de_spwr_stats_t *
- Notes:

/* Stats maintained for each port */
typedef struct de_spwr_pt_stats {
 /* Current Link state, of de_lnk_stat_t */
 uint32_t cur_lnk_stat;
 /* Maximum rx or tx throughput */
 uint32_t max_tput;
 uint32_t purge_err_cnt;
 uint32_t credit_err_cnt;
 uint32_t esc_err_cnt;
 uint32_t discon_err_cnt;
 uint32_t parity_err_cnt;
 uint32_t fifo_ovfl_cnt;
 uint64_t rx_byte_cnt;
 uint64_t tx_byte_cnt;
} __attribute__((packed)) de_spwr_pt_stats_t;

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 9 of 14

DE_REG
- Function: Gets/Sets specific register values at given level (port or base) and offset
- Input: de_reg_cmd_t *
- Output: de_reg_cmd_t *
- Notes:

typedef struct de_reg_cmd {
 /* DE_GET_OP, DE_SET_OP, DE_RMW_OP */
 de_op_t op;
 de_reg_off_t base;
 /* Value read, or to be written */
 unsigned int val;
 /* Reg number or word offset from base */
 unsigned int reg;
 /* Mask if op is RMW */
 unsigned int mask;
} de_reg_cmd_t;

Additional Software Information

Invocation of de_mon

./de_mon a | b 0 | 1
The first parameter specifies which channel to monitor (a for channel 0, b for channel 1). The second
parameter specifies whether packets are currently being transmitted. 0 denotes packets are not being
transmitted, 1 denotes packet transmission in progress.

 ./de_mon a | b 0 | 1 1
The last optional parameter disables packet mode. All data received by Monitor is captured irrespective of
packet boundaries if enabled on channel being monitored.

The application will write packet data to a binary file named monitor_a.dat for channel a, or monitor_b.dat for
channel b. The file will be resident in the same directory as the Monitor application. Upon completion of capture
(application terminated via <ctrl-c>), the file can be converted to a text file by invoking the conversion
application.
 ./ de_BinToTxt bin_file out_file

Command line view while monitor is running:

xxxx@dyneng1:~/Dyneng/de_SpWrMon$./dyn_mon a 0
File write len = 511K bytes
Configured /dev/deSpWrMon_0
Monitor a::cumm pkt bytes 532000000 wait_cnt 0

Notes: 1) cumm pkt bytes is the stored size of the binary file. 2) For this example, the Monitor application
captured 1 million 512-byte packets.

Command line view after ^c stops monitor application which captured two 128 byte packets:

xxxx@dyneng1:~/Dyneng/de_SpWrMon$./dyn_mon a 0

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 10 of 14

File write len = 511K bytes
Configured /dev/deSpWrMon_0
^CMonitor a::cumm pkt bytes 296 wait_cnt 0
 Cur link state = Link Down
 Rx byte cnt = 256
 Tx byte cnt = 0
 Rx packet cnt = 2
 Rx max packets = 1
 Rx max bytes = 128
 Max loop = 2
 Drop cnt = 0
Closed file 0
Channel a cummulative byte count 296 wait_cnt 0
xxxx@dyneng1:~/Dyneng/de_SpWrMon$

Notes: 1) For this example the Monitor application captured two 128 byte packets. 2) Cumulative byte count is
the bytes needed to store captured data and time stamps in binary format.

Text file result of two 128 byte packets captured by Monitor application. Text file is created by
converting binary file monitor0_a.dat written by Monitor application to a readable text file
(montior0_a.txt) using the ./dyn_bcnvrt program provided.

TS is time stamp of format sec.ns

TS:37107.968356917::Packet Number:0::Packet Length:128
a0 b0 c0 00 a0 b0 c0 01 a0 b0 c0 02 a0 b0 c0 03 a0 b0 c0 04 a0 b0 c0 05 a0 b0 c0 06 a0 b0
c0 07 a0 b0 c0 08 a0 b0 c0 09 a0 b0 c0 0a a0 b0 c0 0b a0 b0 c0 0c a0 b0 c0 0d a0 b0 c0 0e
a0 b0 c0 0f a0 b0 c0 10 a0 b0 c0 11 a0 b0 c0 12 a0 b0 c0 13 a0 b0 c0 14 a0 b0 c0 15 a0 b0
c0 16 a0 b0 c0 17 a0 b0 c0 18 a0 b0 c0 19 a0 b0 c0 1a a0 b0 c0 1b a0 b0 c0 1c a0 b0 c0 1d
a0 b0 c0 1e a0 b0 c0 1f

TS:37107.968436231::Packet Number:1::Packet Length:128
0d 0e 0f 00 0d 0e 0f 01 0d 0e 0f 02 0d 0e 0f 03 0d 0e 0f 04 0d 0e 0f 05 0d 0e 0f 06 0d 0e
0f 07 0d 0e 0f 08 0d 0e 0f 09 0d 0e 0f 0a 0d 0e 0f 0b 0d 0e 0f 0c 0d 0e 0f 0d 0d 0e 0f 0e
0d 0e 0f 0f 0d 0e 0f 10 0d 0e 0f 11 0d 0e 0f 12 0d 0e 0f 13 0d 0e 0f 14 0d 0e 0f 15 0d 0e
0f 16 0d 0e 0f 17 0d 0e 0f 18 0d 0e 0f 19 0d 0e 0f 1a 0d 0e 0f 1b 0d 0e 0f 1c 0d 0e 0f 1d
0d 0e 0f 1e 0d 0e 0f 1f

Command line view after enter stops monitor application with packet mode disabled which
captured 256 bytes (channel a transmitted four, 64 byte packets):

Note: Packet count is not displayed when Monitor invoked with packet mode disabled.

xxxx@dyneng1:~/Dyneng/de_SpWrMon$./dyn_mon a 0 1
File write len = 511K bytes
Configured /dev/deSpWrMon_0
Monitor a::cumm pkt bytes 304 wait_cnt 0

 Cur link state = Link Down
 Rx byte cnt = 256
 Rx max bytes = 128

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 11 of 14

 Max loop = 3
 Drop cnt = 0
Closed file 0
Channel a cummulative byte count 304 wait_cnt 0

Resulting text file when running with packet mode disabled (four 64 byte packets transmitted):

Note: First two packets, packet boundaries happened to be preserved, last two packets were combined into
one.
Disregard packet numbers and boundaries in this mode, only inspect data.
TS is time stamp of format sec.ns

TS:5179.822099121::Packet Number:0::Packet Length:64
a0 b0 c0 00 a0 b0 c0 01 a0 b0 c0 02 a0 b0 c0 03 a0 b0 c0 04 a0 b0 c0 05 a0 b0 c0 06 a0 b0
c0 07 a0 b0 c0 08 a0 b0 c0 09 a0 b0 c0 0a a0 b0 c0 0b a0 b0 c0 0c a0 b0 c0 0d a0 b0 c0 0e
a0 b0 c0 0f

TS:5179.822099121::Packet Number:1::Packet Length:64
0d 0e 0f 00 0d 0e 0f 01 0d 0e 0f 02 0d 0e 0f 03 0d 0e 0f 04 0d 0e 0f 05 0d 0e 0f 06 0d 0e
0f 07 0d 0e 0f 08 0d 0e 0f 09 0d 0e 0f 0a 0d 0e 0f 0b 0d 0e 0f 0c 0d 0e 0f 0d 0d 0e 0f 0e
0d 0e 0f 0f

TS:5179.822099121::Packet Number:2::Packet Length:128
a0 b0 c0 00 a0 b0 c0 01 a0 b0 c0 02 a0 b0 c0 03 a0 b0 c0 04 a0 b0 c0 05 a0 b0 c0 06 a0 b0
c0 07 a0 b0 c0 08 a0 b0 c0 09 a0 b0 c0 0a a0 b0 c0 0b a0 b0 c0 0c a0 b0 c0 0d a0 b0 c0 0e
a0 b0 c0 0f 0d 0e 0f 00 0d 0e 0f 01 0d 0e 0f 02 0d 0e 0f 03 0d 0e 0f 04 0d 0e 0f 05 0d 0e
0f 06 0d 0e 0f 07 0d 0e 0f 08 0d 0e 0f 09 0d 0e 0f 0a 0d 0e 0f 0b 0d 0e 0f 0c 0d 0e 0f 0d
0d 0e 0f 0e 0d 0e 0f 0f

Debug
If an error is encountered while running the Monitor, please perform the following steps. This information is
required by Technical Support to resolve any issues.

1) Execute modinfo de_SpwrDrv.ko
 Driver version as well as other information will be displayed.
 Note the version.

2) Execute dmesg
This command will display error messages logged by the driver. Dynamic Engineering drivers are
quite verbose logging errors and cause.
Take a screen shot of the output.

3) Contact Technical Support with information collected in steps 1 and 2.

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 12 of 14

Warranty and Repair
Please refer to the warranty page on our website for the warranty and options that are currently
offered.

www.dyneng.com/warranty

Service Policy
Before returning a product for repair, verify to the best of your ability, that the suspected unit is as
fault. Then call the Dynamic Engineering Customer Service Department for a Return Material
Authorization (RMA) number. Carefully package the product, in the original packaging if possible, and
ship prepaid and insured with the RMA number clearly written on the outside of the package. Include
a return address and the telephone number of a technical contact. For out-of-warranty repairs, a
purchase order for repair charges must accompany the return. Dynamic Engineering will not be
responsible for damages due to improper packaging of returned items. For service on Dynamic
Engineering products not purchased directly from Dynamic Engineering, contact your reseller.
Products returned to Dynamic Engineering for repair by anyone other than the original customer will
be treated as out-of-warranty.

Out-of-Warranty Repairs
Out-of-warranty repairs will be billed on a material and labor basis. Customer approval will be
obtained before repairing any item if the repair charges will exceed one half of the list price for one of
that kind of unit. Return transportation and insurance will be billed as part of the repair in addition to
the minimum RMA charge.

Contact:
Customer Service Department
Dynamic Engineering
150 DuBois St. Suite B/C
Santa Cruz, CA 95005
(831) 457-8891
support@dyneng.com

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 13 of 14

Glossary
Baud Used as the bit period when talking about UARTs; Not strictly correct, but is

the common usage when talking about UARTs.

CardID Unique number assigned to a design to distinguish between all designs of a
particular vendor

CFM Cubic feet per minute

FIFO First In First Out memory

Flash Non-volatile memory used on Dynamic Engineering boards to store FPGA
configurations or BIOS

JTAG Joint Test Action Group – a standard used to control serial data transfer for
test and programming operations.

LFM Linear feet per minute

LVDS Low Voltage Differential Signaling

MUX Multiplexor – multiple signals multiplexed to one with a selection
mechanism to control which path is active.

Packed When UART characters are always sent/received in groups of four, allowing
full use of host bus/FIFO bandwidth.

Packet Group of characters transferred. When the characteristics of the group of
characters is known, the data can be stored in packets and transferred as
such; the system is optimized as a result. Any number of characters can be
transferred.

PCI Peripheral Component Interconnect – parallel bus from host to this device

PIM PMC Interface Module (PIM). Provides rear I/O in cPCI systems. Mounts to
PIM Carrier

PIM Carrier PIM Mounting Device. Mounts on rear of cPCI backplane.

PMC PCI Mezzanine Card – establishes common connectors, connections, size
and other mechanical features.

TAP Test Access Port – basically a multi-state port that can be controlled with
JTAG [TMS, TDI, TDO, TCK]. The TAP States are the states in the State
Machine that are controlled by the commands received over the JTAG link.

TCK Test Clock provides synchronization for the TDI, TDO, and TMS signals

SpaceWire Monitor Win10 Driver Manual

Embedded Solutions Page 14 of 14

TDI Test Data in – this serial line provides the data input to the device controlled
by the TMS commands. For example, the data to program the FLASH
comes on the TDI line while the commands to the state machine to move
through the necessary states comes over TMS. Rising edge of TCK valid.

TDO Test Data Out is the shifted data out. Valid on the falling edge of the TCK.
Not all states output data.

TMS Test Mode State – this serial line provides the state switching controls. ‘1’
indicates to move to the next state, ‘0’ means stay put in cases where
delays can happen; otherwise, 0,2 are used to choose which branch to
take. Due to the complexity of state manipulation, the instructions are
usually precompiled. Rising edge of TCK valid.

UART Universal Asynchronous Receiver Transmitter. Common serialized data
transfer with start bit, stop bit, optional parity, optional 7/8 bit data. Can be
over any electrical interface. RS232 and RS422 are most common.

Unpacked When UART characters are sent on an unknown basis requiring single
character storage and transfer over the host bus

VendorID Manufacturers number for PCI/PCIe boards. DCBA is Dynamic
Engineering’s VendorID

VME Versa Module European

VPX Family of standards based on the VITA 46.0

XMC Switched mezzanine card (PMC with PCIe)

