
DYNAMIC ENGINEERING
150 DuBois St., Suite B&C Santa Cruz, CA 95060

(831) 457-889
https://www.dyneng.com

sales@dyneng.com
Est. 1988

User Manual

PMC-BiSerial-VI-UART Hardware
Manual

8-Channel UART Interface
Parallel Port can replace UART ports selectively

Manual Revision 1p14

Corresponding Hardware: 10-2015-060(6,7)
Revision 06 and 07 currently in production

https://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 69

PMC-Biserial-VI-UART

8-Channel UART Interface

Dynamic Engineering
150 DuBois St., Suite B&C
Santa Cruz, CA 95060
(831) 457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©1988-2025 by Dynamic Engineering.
Other trademarks and registered trademarks are
owned by their respective manufacturers.
Manual Revised 5/30/25

 Embedded Solutions Page 3 of 69

PRODUCT DESCRIPTION 6

THEORY OF OPERATION 11

PROGRAMMING 13

Base Address Map 16

UART Port Address Map 17

Channel Offsets 18

Register Definitions 19
BASE_REG 19
BASE_GP 21
BASE_INT 22
BASE_PllData 23
BASE_PllStatus 23
BASE_PP_MUX 25
BASE_PP_DatIO 26
BASE_PP_DIR 27
BASE_PP_TERM 27
BASE_PP_DATRDBK 28
BASE_PP_INTEN 28
BASE_PP_RISE 28
BASE_PP_FALLE 29
BASE_PP_POL 29
BASE_PP_EDGE 29
BASE_PP_RISINGL 30
BASE_PP_FALLINGL 30
BASE_PP_FILDAT 31
BASE_PP_HALFDIV 31
UART_CHAN_CONT 32
UART_CHAN_CONTB 39
UART_CHAN_STAT 43
CHAN_TX_FIFO_CNT 47
CHAN_RX_FIFO_CNT 47
CHAN_TX_DMA_PNTR 48
CHAN_RX_DMA_PNTR 49
CHAN_UART_FIFO 50
CHAN_TXFIFO_LVL 51
CHAN_RXFIFO_LVL 51
CHAN_FRAME_TIME 52

 Embedded Solutions Page 4 of 69

CHAN_BAUD_RATE 53
CHAN_PACKET_FIFO 54
CHAN_TX_TIMER_MOD 55
CHAN_TX_TIMER_CNT 56
LOOP-BACK & IO Connection Definitions - STD 57
LOOP-BACK & IO Connection Definitions – LM12, LM13 59

PMC PCI PN1 INTERFACE PIN ASSIGNMENT 61

PMC PCI PN2 INTERFACE PIN ASSIGNMENT 62

APPLICATIONS GUIDE 63

Interfacing 63

CONSTRUCTION AND RELIABILITY 64

THERMAL CONSIDERATIONS 65

WARRANTY AND REPAIR 65

Service Policy 65
Out of Warranty Repairs 65

For Service Contact: 65

SPECIFICATIONS 66

ORDER INFORMATION 67

GLOSSARY 68

 Embedded Solutions Page 5 of 69

FIGURE 1 PMC-BISERIAL-VI-UART BLOCK DIAGRAM 7
FIGURE 2 UART TRANSFER ENCODING 11
FIGURE 3 UART TRANSFER SCREEN SHOT 14
FIGURE 4 PMC-BISERIAL-VI-UART BASE ADDRESS MAP 16
FIGURE 5 PMC-BISERIAL-VI-UART UART CHANNEL ADDRESS MAP 17
FIGURE 6 PMC-BISERIAL-VI-UART CHANNEL OFFSETS 18
FIGURE 7 PMC-BISERIAL-VI-UART BASE CONTROL REGISTER 19
FIGURE 8 PMC-BISERIAL-VI-UART BASE GP REGISTER 21
FIGURE 9 PMC-BISERIAL-VI-UART BASE INTERRUPT STATUS 22
FIGURE 10 PMC-BISERIAL-VI-UART BASE PLL DATA FIFO 23
FIGURE 11 PMC-BISERIAL-VI-UART BASE PLL STATUS 23
FIGURE 12 PORT MODE BIT MAP 25
FIGURE 13 GPIO DATA IO BIT MAP 26
FIGURE 14 GPIO DIRECTION BIT MAP 27
FIGURE 15 GPIO TERMINATION REG BIT MAP 27
FIGURE 16 GPIO DIRECT READ BIT MAP 28
FIGURE 17 GPIO INTERRUPT ENABLE REG BIT MAP 28
FIGURE 18 GPIO RISING ENABLE BIT MAP 28
FIGURE 19 GPIO FALLING ENABLE BIT MAP 29
FIGURE 20 GPIO POLARITY REG BIT MAP 29
FIGURE 21 GPIO EDGELEVEL REG BIT MAP 29
FIGURE 22 GPIO COS RISING STATUS BIT MAP 30
FIGURE 23 GPIO COS FALLING STATUS BIT MAP 30
FIGURE 24 GPIO FILTERED READ BACK BIT MAP 31
FIGURE 25 GPIO COS CLK CONTROL BIT MAP 31
FIGURE 26 PMC-BISERIAL-VI-UART UART CHAN CONTROL 32
FIGURE 27 PMC-BISERIAL-VI-UART UART CHANB CONTROL 39
FIGURE 28 PMC-BISERIAL-VI-UART UART STATUS 43
FIGURE 29 PMC-BISERIAL-VI-UART TX FIFO COUNTS 47
FIGURE 30 PMC-BISERIAL-VI-UART RX FIFO COUNTS 47
FIGURE 31 CHANNEL WRITE DMA POINTER PORT 48
FIGURE 32 CHANNEL READ DMA POINTER PORT 49
FIGURE 33 PMC-BISERIAL-VI-UART UART FIFO 50
FIGURE 34 PMC-BISERIAL-VI-UART AMT LEVEL 51
FIGURE 35 PMC-BISERIAL-VI-UART AFL LEVEL 51
FIGURE 36 PMC-BISERIAL-VI-UART FRAME TIME 52
FIGURE 37 PMC-BISERIAL-VI-UART BAUD RATE 53
FIGURE 38 PMC-BISERIAL-VI-UART PACKET FIFO 54
FIGURE 39 PMC-BISERIAL-VI-UART TX MODULUS 55
FIGURE 40 PMC-BISERIAL-VI-UART TX TIMER CNT 56
FIGURE 41 PMC-BISERIAL-VI-UART PN1 INTERFACE 61
FIGURE 42 PMC-BISERIAL-VI-UART PN2 INTERFACE 62

 Embedded Solutions Page 6 of 69

Product Description

PMC-BISERIAL-VI-UART is a PMC with options for bezel and rear IO, high speed
signaling, multiple modes of operation, 1K byte of storage per Tx or Rx node. 8 Full
Duplex Ports. Added features with the BiSerial-VI version include DMA and additional
transmit modes to support forced errors and unusual protocols. Option to enable
Parallel port in place of UART ports.

PMC-BISERIAL-VI-UART uses a 10 mm inter-board spacing for the front panel,
standoffs, and PMC connectors. The 10 mm height is the "standard" height and will
work in most systems with most carriers. If your carrier has non-standard connectors
(height) to mate with PMC-BISERIAL-VI-UART, please let us know. We may be able to
do a special build with a different height connector to compensate.

Feature Table:
1. 255x32 FIFOs for Rx and Tx data storage per channel
2. 255x16 FIFOs for Packet definitions Rx and Tx
3. 5 operating modes, 32 bit packed, 8 bit unpacked, packetized, alternate packetized
and Test(Tx only)
4. 8 position Switch
5. Windows & Linux driver with reference software. VxWorks by request.
6. Industrial temperature components [-40 +85C]
7. Standard baud rates and non-standard baud rates programmable based on a 32
MHz reference. 2M Tx and Rx max rate. PLL with user defined frequency up to 100
MHz also available. With PLL max rate is 6.25 Mbits.
8. Parallel Port – GPIO features, programmable to replace UART ports on a port-by-port
basis. Requires Flash revision 3.1 or later.

 Embedded Solutions Page 7 of 69

The following diagram shows the PMC-BISERIAL-VI-UART configuration:

FIGURE 1 PMC-BISERIAL-VI-UART BLOCK DIAGRAM

Please note: The Packet FIFOs provide an additional 256 x 16 per channel per
direction [2xN] to store packet sizes for transmission or definitions from reception.

If you can use the BiSerial hardware but need an alternate protocol please contact
Dynamic Engineering. We will redesign the state machines and create a custom
interface protocol. Please contact Dynamic Engineering with your custom application.

The UART protocol implemented provides RS485 or LVDS data inputs and outputs.
The transceivers have supporting programmable terminations to allow for in cable and
on-board termination situations. The receivers are open cable safe – marking state is
detected when undriven.

Baud rates are programmed for each transmitter and receiver separately. The design
uses a distributed enable concept to allow all channels to be referenced to the master
32 MHz clock and be programmed to unique counts.

The transmitter has a pulse generator that puts out 1 clock period per programmed
count. The state-machine is referenced to the master clock and sequences when the
pulsed enable is present. This allows all transmit UARTs to use the same reference
clock and results in much better timing within the FPGA with limited clock resources.

Rx data is asynchronous and potentially noisy. Rx data is synchronized and filtered
with the master reference clock before being presented to the UART decoder. Within
the UART, data is sampled and checked for being in the marking state before looking

 Embedded Solutions Page 8 of 69

for the first start bit.

Transitions are detected and used to update the reference count. When transitions are
not detected; the reference count and programmed baud rate [expected count] are used
to determine when to capture bits. The receiver uses the programmed count to
determine when to sample the data received. The transition detections are filtered to
only be applicable within 1/8th of the expected transition. The receiver can handle quite
a lot of jitter in this manner. Depending on the data [number of transitions] up to +/-
1/8th bit period per bit cell (with a transition).

Each PMC-BISERIAL-VI-UART channel is supported by two 255 by 32-bit FIFOs. The
TX FIFO supports long-word writes, and the RX FIFO supports long-word reads. A
FIFO test bit in each channel control register enables the data to be routed from the TX
to the RX FIFO for loop-back testing of the FIFO’s. The FIFO’s are used for packed,
unpacked, packetized, Alternate Packetized and Test modes of operation.

In packed mode 32 bit data is assumed, 4 bytes per LW to transmit or receive. Bytes
are sent/received 0,1, 2, 3 with byte 0 being the data bits 7-0 on the PCI bus. 1/4 of the
reads and/or writes are needed in this mode compared to unpacked.

Unpacked mode operates more like a traditional byte wide UART. Only Byte 0 is used
for each LW read / written to the FIFO’s. Effectively a 255 byte FIFO for TX and RX in
this mode compared to 1020 bytes possible in packed mode.

With both packed and unpacked modes, if the UART is enabled the data is sent and
received on demand. As soon as there is data in the output FIFO it is transmitted. If
the FIFO becomes empty the transmitter waits in the marking state until more data is
ready to send. Similarly the receiver writes data as it comes in without any concept of
a frame or packet.

In packetized mode the transmitter waits for the packet descriptor FIFO [255x16] to
have at least one descriptor loaded. As data for the packet becomes available it is
transmitted. Any number of bytes can be sent in this mode. Data is packed with the
possible exception of the last LW in a packet. 1, 2, 3, or 4 bytes can be sent from the
last LW read for a particular packet. The next packet will start on the next LW
boundary. Packets can be stacked in memory and unloaded as described [just multiple
times]. In addition the inter-packet timer can be utilized to add delay between
consecutive packets.

Alternate Packetized mode is similar to Packetized mode with the ability to send packed
data and a final LW with a smaller number of bytes for any length. The difference is the
data is packed 3 bytes per LW with the upper byte used for control. The last LW in a

 Embedded Solutions Page 9 of 69

packet has the MSbit set to indicate it is the last in the packet, the next two bits provide
the count – number of bytes to send. The transmitter can be programmed to go to
tristate after the packet completes in this mode as well. The advantange is a single
DMA transfer can load the packet control. The disadvantage is the loss of ¼ of the data
transfer available.

Depending on your system requirements, and the number of bytes to send per message
the best choice of the 4 standard modes can be made. Test mode is used to create
errors and for system test and development.

Test Mode allows the user complete control over the data sent on a word by word basis.
The lower 16 bits of the FIFO determine what is sent with the SW providing all of the
formatting – including start bits and so forth. A separate field provides the number of
bits to send out of the 16.

The receiver uses a programmable timeout to determine the end of the packet. It is
suggested to use the equivalent time to 2 characters modified as needed for the inter-
character gap you expect in your system. Data being received is stored locally and
built into a LW to write to the Rx FIFO. When an inter-character gap exceeds the
programmed delay the accumulation stops and the data captured is written to the FIFO.
In addition, data is written to the FIFO when a complete LW is available. When the end
of packet is detected the packet length and packet status are written to the Rx Packet
FIFO. The accumulated status is written along with the length to allow multiple
packets to be stored and accurate status per packet to be available.

Interrupts can be programmed from a variety of sources. The FIFO’s have counts and
comparators to allow almost full and almost empty situations to cause interrupts. In
addition an interrupt is available for packet transmitted, packet received, and various
error conditions. All interrupts are individually maskable, and a channel master
interrupt enable is provided to disable all interrupts on a channel simultaneously. The
current real-time status is also available from the FIFO’s making it possible to operate in
a polled mode.

When using internal loop-back the Almost Full and Almost Empty counts should be set
to x10 or more from the end of the FIFO.

More on byte alignment: Transmit bytes are read from byte positions 0->3 byte lane
wise [7-0] first, [15-8] second, [23-16] third and [31-24] last and the bytes are
transmitted in this order. For message byte-counts not divisible by four, the last long-
word is read as described. Any unused bytes are considered padding with the next
message starting with the next FIFO long-word. For example, with 7 bytes to send, a
word of 4 bytes will be read, then the lower 3 bytes will be read and sent and the 8th

 Embedded Solutions Page 10 of 69

byte will be dropped.

In the receive direction the action is similar. Bytes are written as long-words to the RX
FIFO. The first byte received is loaded into long-word byte 0 [7-0], then byte 1 [15-8],
byte 2 [23-16] and byte 3 [31-24]. Whenever a message does not have a complete
long-word to load and the end-of-packet character is received, zero-padding of the
unused upper-bytes will occur before the long-word is written to the FIFO.

A new feature available with Revision 3 and later Flash is a programmable parallel port.
GPIO with COS interrupts. Each UART port consists of Tx, Rx, RTS, and CTS signals.
8 ports utilize 32 IO. For each port the user can select UART or Parallel operation. The
default is UART to allow the new HW to be used with software not written with the
Parallel Port incorporated. The parallel port has separate 32 bit ports for direction,
termination, COS [rising and falling edge selection] edge/level operation, Inversion,
Direct Data and filtered data. The parallel port bits not assigned to the parallel port
should be masked when read. Writing to the controlling bits will have no effect on
UART assigned bits. The updated UserAp has an added file demonstrating COS
interrupt operation as well as general setup and use.

Dynamic Engineering offers drivers and reference software for Windows®, and Linux.
Drivers and reference SW are available AS-IS to clients of the PMC-BISERIAL-VI-
UART. Support contracts are encouraged to help with integration and enhancements.
https://www.dyneng.com/TechnicalSupportFromDE.pdf

https://www.dyneng.com/TechnicalSupportFromDE.pdf

 Embedded Solutions Page 11 of 69

Theory of Operation

PMC-BISERIAL-VI-UART provides UARTs for transferring data from one point to
another using the standard UART transfer protocol. A parallel port is also available for
any UART ports not required. For example 4 UARTs plus a 16 bit parallel port.

While UARTs are mature devices, enhancements will necessitate updates over time.
PMC-BISERIAL-VI-UART features the ability to reprogram the FPGA storage FLASH to
allow updates via software. A programming adapter is required to use this feature on
this HW set.

A logic block within the Xilinx controls the PCI interface to the host CPU. PMC-
BISERIAL-VI-UART design requires one wait state for read or writes cycles to any
address. The wait states refer to the number of clocks after the PCI-core decode before
the “terminate with data” state is reached. Two additional clock periods account for the
1 clock delay to decode the signals from the PCI bus and to convert the terminate-with-
data state into the TRDY signal.

There are multiple UARTs each with separate Receiver and Transmitter. Each pair is
organized into a Channel within the FPGA. Frequency of operation [Baud rate], mode
of operation, Parity, Stop bits, interrupt conditions are all programmable on a channel
basis. In addition the mode of operation can be selected for each receiver and
transmitter.

Each channel has separate state-machines to control the Transmit and Receive
operation. The Tx state-machine uses the programmed values to regulate the transfer
of data from the transmit storage FIFO and transmit packet FIFO to the Tx line. The Rx
state-machine uses the programmed values to regulate the transfer of data from the line
to the receive storage FIFO and to store descriptors into the Rx packet FIFO.

FIGURE 2 UART TRANSFER ENCODING

M
a
rk

in
g

S
ta

rt

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

/P
/M

P
/M

M
a
rk

in
g

 Embedded Solutions Page 12 of 69

The Transmit state-machine will transmit a high level followed by the first falling edge of
the transmission. The falling edge is the leading edge of the start bit. The start bit is 1
period wide and followed by the first data bit [LSB] of the byte being transmitted. D1-
D6 follow. If the UART is programmed for 8 bit data the next period is D7. If
programmed for 7 bit data the next position can be Parity if that is enabled or the
marking state. The shortest transfer of a byte is 7 bit data, no parity and 1 stop bit for a
total of 1[start]+7[data]+1[stop] = 9 bits. If 8 bit data is selected and parity is enabled
the length becomes 1+8+1+1 = 11 bits. If 2 stop bits are selected an extra clock
period is inserted between byte transfers.

The receiver does not have a clock to work with and uses over-sampling to detect the
transitions and the programmed expected transfer rate to count into the bit periods to
determine the bit value. The receiver also checks the expected termination values are
present – for example a framing error is detected if the received signal is low when
marking is expected.

Parity can be programmed to be odd, even or level. When odd the parity bit is
set/cleared to make the number of 1’s odd. For example if the data is “AA” an even
number of bits are set in the data so the parity would be set “0 01010101 1 1” would be
the string with start, data, parity and stop shown. Please note the lsb first nature of the
data. The spaces are added for clarity. For even parity the reverse is true, with parity
set/cleared to make the total of the data and parity fields an even count.

In addition to the framing and parity errors, FIFO over-run is flagged. When the Rx
FIFO is full and a write is attempted the error is captured. A full FIFO will not accept
the new write so that data is lost.

Break characters are detected by the RX state-machine and prioritized in terms of
status. Status is determined Break, Frame, Parity with only one type of error or
condition reported per incident. Interrupts can be generated from the occurrence.

When Break or Frame is detected the receiver resynchronizes before looking for new
characters. With parity errors the error is flagged and processing continues without
resynchronization.

Over reading the Rx FIFO is not an error condition. The FIFO will continue to provide
the last read data multiple times. The FIFO count should be read prior to doing read
multiple commands to prevent under-run.

On the Tx side an empty FIFO causes the transmitter to go to the marking state once
the last word read has been transmitted. When more data is available that data will be
transmitted. No under-run error is generated for this situation.

 Embedded Solutions Page 13 of 69

Programming

Programming PMC-BISERIAL-VI-UART board requires only the ability to read and write
data from the host. The base address is determined during system configuration of the
PCI bus. The base address refers to the first user address for the slot in which the
board is installed. The VendorId = 0xDCBA. The CardId = 0x0061.

In order to transfer data to another UART, several steps must be performed. First a
physical connection must be established with the appropriate interface cable. Then the
Channel of interest must be programmed with the appropriate UART parameters for
transmit and or receive operations. Each channel has a separate register set for
control bits, baud rate and other parameters. Once programmed you can load data into
the Tx buffer for transmission or read from the Rx when data becomes available.

Be sure to select the correct mode of operation, and note the Rx and Tx do not need to
be the same.

The hardware supports several modes of operation. Choose the right mode based on
your environment. For example if you are operating with a console program and need
to remain compatible with other standard UARTs the 8bit [unpacked] mode will be the
right choice. In this mode 512 bytes for Rx and Tx are available.

If you need more performance and can do some adaptation the Packet, Alt Packet, or
Packed modes are very useful. The Packed mode is easy to use but requires byte
counts that are multiples of 4. Packet mode is the best of both with almost complete
FIFO utilization and the ability to send non-LW boundary message lengths. Packet
mode Packets can be stored ahead and transmitted based on the packet descriptor
being written or pre-loaded and sent out as the HW becomes ready. Packet received
and packet transmitted interrupts are available to help optimize operation.

The reference software has examples of using all modes of operation.

The baud rate is programmable, and should be set to a value close to the value
expected. The jitter tolerance will allow slightly off frequencies to work, but will
effectively have no jitter tolerance when operating in this manner. The baud rate is
programmable directly based on the reference frequency allowing 1 part in 32 x106.
With the RS485 IO the maximum rate tested is 4M+. Using the PLL reference higher
rates are programmable.

 Embedded Solutions Page 14 of 69

FIGURE 3 UART TRANSFER SCREEN SHOT

The diagram above depicts all 8 UART channels running with data at 2 MBits/sec and
using RTS/CTS flow control. This is a board-to-board test where the 8 transmiters are
on one card and the 8 receivers on a second card. Data is loaded and unloaded using
DMA. The test SW is available for the Windows reference package. The SW is
reversible meaning the current receiving board can become the transmitter and vice-
versa.

 Embedded Solutions Page 15 of 69

Firmware Updates

Revision 2.1: First release on “VI”. DMA added
Revision 2.2 Test and Alternate Packetized modes added
Revision 2.3 Add back to back test mode transmission
Revision 2.4 Add clock option to use PLL or 32 MHz for each channels reference
Revision 2.5 Add RTS/CTS flow control to design.
Revision 2.6 Add clearing of accumulated status errors between packets for Alt Packet
Mode [already in place for standard Packet mode]
Revision 2.7 Add Big Endian support
Revision 2.8 misc clean-up, mark and space parity clean-up, allow for PLL rates up to
64 MHz.
Revision 2.9 Update DMA for better sharing between ports for access to the PCI bus.
Revision 2.10 Update DMA for better performance, recompile for 100 MHz PLL
operation.
Revision 2.11-13 Update for Revision 7 PCB, add programmable Latched/level interrupt
options for AFL and AMT interrupts. Misc. clean-up of manual.
Revision 3.1 Add programmable Parallel Port. COS / GPIO capabilities. Enable/disable
on a per UART port basis. [4 bits at a time]

 Embedded Solutions Page 16 of 69

Base Address Map

Register Name Offset Description

#define BASE_REG 0x0000 //0 JTAG programming control
#define BASE_GP 0x0004 //1 Switch, revision
#define BASE_INT 0x0008 //2 Interrupt Status
#define BASE_PllData 0x0010 //4 PLL Data
#define BASE_PllStatus 0x0014 //5 PLL Status

#define BASE_PP_MUX 0x0018 //6 Select Parallel Port / UART operation
#define BASE_PP_DATIO 0x001C //7 Transmit Data Register
#define BASE_PP_DIR 0x0020 //8 Direction Control
#define BASE_PP_TERM 0x0024 //9 Termination Control
#define BASE_PP_DATRDBK 0x0028 //10 Direct Read of IO
#define BASE_PP_INTEN 0x002C //11 Interrupt Enables
#define BASE_PP_RISE 0x0030 //12 Rising Edge Enables
#define BASE_PP_FALLE 0x0034 //13 Falling Edge Enables
#define BASE_PP_POL 0x0038 //14 Polarity Control
#define BASE_PP_EDGE 0x003C //15 Edge/Level control
#define BASE_PP_RISINGL 0x0040 //16 Rising Edge Latched Status
#define BASE_PP_FALLINGL 0x0044 //17 Falling Edge Latched Status
#define BASE_PP_FILDAT 0x0048 //18 Filtered Data Read-back
#define BASE_PP_HALFDIV 0x004C //19 COS reference clock control

FIGURE 4 PMC-BISERIAL-VI-UART BASE ADDRESS MAP

 Embedded Solutions Page 17 of 69

UART Port Address Map

Register Name Offset Description

#define CHAN_CNTL 0x0000 //0 UART Port Control Bits R/W
#define CHAN_CNTLB 0x0004 //1 Expanded UART control bits & Tx Packet delay
#define CHAN_STAT 0x0008 //2 UART Port Status Bits Read /write to clear
#define CHAN_TX_FIFO_CNT 0x000C //3 UART Port TX Packet and Data FIFO's
#define CHAN_RX_FIFO_CNT 0x0010 //4 UART Port RX Packet and Data FIFO's
#define CHAN_TX_DMA_PTR 0x0014 //5 UART Port Write TX DMA Pointer
#define CHAN_RX_DMA_PTR 0x0018 //6 UART Port Write RX DMA Pointer
#define CHAN_RX_UART_FIFO 0x001C //7 UART Port Read from RX UART FIFO
#define CHAN_TX_UART_FIFO 0x001C //7 UART Port Write to TX UART FIFO
#define CHAN_TXFIFO_LVL 0x0020 //8 UART Port Tx Almost Empty 15-0 =
#define CHAN_RXFIFO_LVL 0x0024 //9 UART Port Rx Almost Full 15-0
#define CHAN_FRAME_TIME 0x0028 //10 UART Port End of Frame Time 23-0
#define CHAN_BAUD_RATE 0x002C //11 UART Port Frequency 15-0 = Tx, 31-16 = Rx
#define CHAN_TX_PKT_FIFO 0x0030 //12 UART Port Write to TX Packet FIFO
#define CHAN_RX_PKT_FIFO 0x0030 //12 UART Port Read from RX Packet FIFO
#define CHAN_TX_MODULUS 0x0034 //13 UART R/W Modulus definition Port
#define CHAN_TX_CURRENT 0x0038 //14 UART RO Timer Curent Count

//15-19 Spare decodes per port

FIGURE 5 PMC-BISERIAL-VI-UART UART CHANNEL ADDRESS MAP

There are 8 UART Ports. Each port/channel has a separate set of control registers as
shown in Figure 4. The offset for each of the channels is shown in Figure 5.

 Embedded Solutions Page 18 of 69

 Channel Offsets

#define CH_0 0x0050 //20 address pointer for channel 0
#define CH_1 0x00A0 //40 address pointer for channel 1
#define CH_2 0x00F0 //60 address pointer for channel 2
#define CH_3 0x0140 //80 address pointer for channel 3
#define CH_4 0x0190 //100 address pointer for channel 4
#define CH_5 0x01E0 //120 address pointer for channel 5
#define CH_6 0x0230 //140 address pointer for channel 6
#define CH_7 0x0280 //160 address pointer for channel 7

FIGURE 6 PMC-BISERIAL-VI-UART CHANNEL OFFSETS

The base address for PMC-BISERIAL-VI-UART is set by the system. For Base features
the base address is added to the base feature offset. For Channel features the base
address is added to the Channel Offset and to the Channel Feature. Address = Base +
Channel Offset+Channel Feature. All addresses are on LW boundaries and all
accesses affect the entire LW. Writing a byte still affects the other three bytes.

 Embedded Solutions Page 19 of 69

Register Definitions

BASE_REG

Base Control Register (read/write)

Base Control

 Data Bit Description
 31 BigEndianDMA
 30-5 Spare
 4 PllAltAddress
 3 CheckPll
 2 ReadPll
 1 ClrPll
 0 PllProgEn

FIGURE 7 PMC-BISERIAL-VI-UART BASE CONTROL REGISTER

All bits are active high and are reset on system power-up or reset.

PllProgEn: When this bit is set to a one, the state-machine used to program the PLL is
enabled to operate.

ClrPll: when set the PLL and associated memories are cleared. Must be returned to
cleared for normal operation.

ReadPll: when set the PLL is read and the data returned. Must be returned to cleared
for normal operation.

CheckPll: when set the PLL address is checked the data returned. Must be returned to
cleared for normal operation.

PllAltAddress: when set the alternate PLL address is used for programming and
reading operations.

The PLL is programmed with the output file generated by the Cypress PLL
programming tool. [CY3672 R3.01 Programming Kit or CyberClocks R3.20.00 Cypress
may update the revision from time to time.] The .JED file is used by the Dynamic Driver
to program the PLL. Programming the PLL is fairly involved and beyond the scope of
this manual. For clients writing their own drivers it is suggested to get the Engineering
Kit for this board including software, and to use the translation and programming files
ported to your environment. This procedure will save you a lot of time. For those who
want to do it themselves the Cypress PLL in use is the 22393. The output file from the
Cypress tool can be passed directly to the Dynamic Driver [Linux or Windows] and used

 Embedded Solutions Page 20 of 69

to program the PLL without user intervention.

The reference frequency for the PLL is 16 MHz.

PLLA provides the reference for ports 0 & 1. PLLB provides the reference for Ports 2 &
3. PLLC provides the reference for ports 4 & 5. PLLD provides the reference for Ports
6 & 7. Please refer to the port control interface to select the master UART clock
reference or the PLL based reference plus any subsequent reduction in rate.

BigEndianDma : ‘0’ disables this option. ‘1’ enables this option. When operating with a
Big Endian platform and using PCI accesses DMA can have challenges. The register
accesses directly over the PCI bus are usually taken care of automatically with byte
swapping within the CPU or PCI interface on the CPU. DMA data is written to or read
from the local memory and is not swapped. The direct read/write from memory ends up
with scrambled data [relative to UART little endian definitions]. Setting this bit will byte
reverse the data for the DMA path into the Tx and out of the Rx FIFO’s only. Register
accesses are not affected.

31-24, 23-16, 15-8, 7-0 7-0, 15-8, 23-16, 31-24 byte swapping pattern implemented.

 Embedded Solutions Page 21 of 69

BASE_GP

Base General Purpose Register (read)

Base General Purpose Register

#define BASE_STAT_SW_MASK 0x000000FF // 7-0 are switch bit when installed
#define BASE_STAT_REV_MAJ 0x0000FF00 // Design major revision
#define BASE_STAT_REV_MIN 0x00FF0000 // Design minor revision
#define BASE_STAT_XIL_TYP 0xFF000000 // Design number -- static per

implementation

FIGURE 8 PMC-BISERIAL-VI-UART BASE GP REGISTER

Switch 7-0: The user switch is read through this port. The bits are read as the lowest
byte. Access the read-only port as a long word and mask off the undefined bits. The
dip-switch positions are defined in the silkscreen. For example the switch figure below
indicates a 0x12. The switch is an optional item. Bits have no meaning if not installed.

The Major Revision is used to track FLASH releases to the client. The revision will be
updated when official releases to clients occur to allow the client to tell if a board has
been updated. Currently 3.

The Minor Revision is used to track FLASH updates during development and for
unofficial releases to clients. This revision may roll over depending on the number of
iterations needed. Currently 1.

The Xilinx Type is the design number for a particular version of the board. A new type
will be assigned for each new design implemented. In addition the CardID will also be
updated. UART is type x15. -LM model is type x1A.

7--------------------------0

1

0

 Embedded Solutions Page 22 of 69

BASE_INT

Base Interrupt Status Register (read/write)

Base Interrupt Status

#define BASE_INT_CH_0 0x00000001 // Set if interrupt active channel 0
#define BASE_INT_CH_1 0x00000002 // Set if interrupt active channel 1
#define BASE_INT_CH_2 0x00000004 // Set if interrupt active channel 2
#define BASE_INT_CH_3 0x00000008 // Set if interrupt active channel 3
#define BASE_INT_CH_4 0x00000010 // Set if interrupt active channel 4
#define BASE_INT_CH_5 0x00000020 // Set if interrupt active channel 5
#define BASE_INT_CH_6 0x00000040 // Set if interrupt active channel 6
#define BASE_INT_CH_7 0x00000080 // Set if interrupt active channel 7
#define RISING_INT_ACT 0x00000100 // Set if a COS Rising Int is set
#define FALLING_INT_ACT 0x00000200 // Set if a COS Falling Int is set
#define LEVEL_INT_ACT 0x00000400 // Set if a COS Level Int is set

#define RISING_INT_EN 0x00010000 // Set if Rising Interrupts are enabled
#define FALLING_INT_EN 0x00020000 // Set if Falling Interrupts are enabled
#define LEVEL_INT_EN 0x00040000 // Set if Level Interrupts are enabled

FIGURE 9 PMC-BISERIAL-VI-UART BASE INTERRUPT STATUS

Each UART channel has a multitude of interrupt options. Those possible interrupts are
combined into one for the port and used to generate a board level interrupt, and to
provide the status in the register as shown. Clear the interrupt by servicing the source
channel. Multiple interrupts can be detected in one read.

The bits corresponding to the enables are Enabled/Disabled by writing to this port which
the matching bits set or cleared. Upper 16 bits are R/W. Lower 16 are read-only.

Please note: if the Parallel Port interrupt enables are disabled the ACT bits can be used
for polling. The interrupt request is the AND of the ACT and EN bit for each type.

 Embedded Solutions Page 23 of 69

BASE_PllData

[0x0010] PLL Data FIFO (read/write)

PLL Data FIFO

 Data Bit Description
 31-0 Data to PLL or Data From PLL

FIGURE 10 PMC-BISERIAL-VI-UART BASE PLL DATA FIFO

A hardware I2C interface for programming the PLL is provided. Dynamic Engineering
driver support packages include utilities to take the .jed file from the Cypress
CyberClocks program, parse and load into the FIFO with the proper sequence of
controls via Base Control Register. Please see the reference code for the sequence.
Linux, VxWorks, Win7 packages. The PLL clock reference is 16 MHz.

The data to program the PLL is written to this address. The hardware has a state-
machine to read the data from the FIFO and load into the PLL. Similarly the state-
machine can read the data from the PLL and write it to the read side FIFO.

BASE_PllStatus

[0x0014] PLL Status (read/write)

Time Control Register

 Data Bit Description
 31-10 Spare
 10 PLL Error Latched
 9 PLL Done Latched
 8 PLL Ready
 7 Spare
 6 PLL FIFO RX Data Valid
 5 PLL FIFO RX FULL
 4 PLL FIFO RX EMPTY
 3 Spare
 2 PLL FIFO TX Data Valid
 1 PLL FIFO TX FULL
 0 PLL FIFO TX MT

FIGURE 11 PMC-BISERIAL-VI-UART BASE PLL STATUS

 Embedded Solutions Page 24 of 69

The PLL Status bits are used to as feed-back to control the transfer of data to and from
the PLL FIFO. TX refers to programming the PLL and RX refers to reading back from
the PLL.

The Latched Bits {10,9} are held until cleared by writing back with the bit position(s) set.
Usually these bits are cleared before starting an operation.

PLL FIFO TX MT is set when the programming FIFO for the PLL is empty.

PLL FIFO TX FULL is set when the programming FIFO for the PLL is full.

PLL FIFO TX Data Valid is set when data is valid in the pipeline between the FIFO and
the State –Machine. The bit is cleared each time the data is read. During operation this
bit will toggle to provide some indication that the transfer is occurring.

PLL FIFO RX MT is set when the read-back FIFO for the PLL is empty.

PLL FIFO RX FULL is set when the read-back FIFO for the PLL is full.

PLL FIFO RX Data Valid is set when Data is valid in the output port for the PLL read
path. Data is pre-read from the FIFO and held in the FIFO holding register. The FIFO
can be Empty and still have 1 word left in the holding register if Valid is still set.

PLL Done Latch is set when the transfer is completed. This bit can be polled to know
when the PLL has been programmed or when the PLL has been read. Please note:
The PLL settling time is in addition to the transfer time. Several mS should be delayed
after programming the PLL to make sure the specified frequencies are within range. 10
mS is recommended.

PLL Error Latched is set when an error is detected in the I2C transfer. The main
purpose for this bit is in discovery for the address of the PLL. The Address can be x6A
or x69. Once the correct address is known this bit should be checked but not set.
Sticky bit, write with bit position set to clear.

PLL mapping to ports is defined in the channel section under Control Register B.

 Embedded Solutions Page 25 of 69

BASE_PP_MUX

[$18 Parallel or UART selection Port read/write]

DATA BIT DESCRIPTION

31-8 Spare
7 ‘0’ = UART, ‘1’ = Parallel Port for Port 8
6 ‘0’ = UART, ‘1’ = Parallel Port for Port 7
5 ‘0’ = UART, ‘1’ = Parallel Port for Port 6
4 ‘0’ = UART, ‘1’ = Parallel Port for Port 5
3 ‘0’ = UART, ‘1’ = Parallel Port for Port 4
2 ‘0’ = UART, ‘1’ = Parallel Port for Port 3
1 ‘0’ = UART, ‘1’ = Parallel Port for Port 2
0 ‘0’ = UART, ‘1’ = Parallel Port for Port 1

FIGURE 12 PORT MODE BIT MAP

The default at reset and driver launch is UART operation on each port. When the MUX
register is updated with Parallel Port selected the IO is remapped to the Parallel Port
controls. When set to UART the directions are predefined based on the mode of the
UART. In parallel port mode the controls are derived from the parallel port registers.

The UART IO definitions are related to the Parallel Port definitions.
PP3 RTS1
PP2 CTS1
PP1 RX1
PP0 TX1

UART 1 is muxed with the lowest nibble on the Parallel port. The relationship is
consistent for each port and the read-back ports. For example, map out UART 2 to be a
parallel port. The 4 bits switched will be PP 7-4 and correspond to RTS2, CTS2, RX2,
Tx2 on the cable.

Please note: The Parallel Port 31-0 do not align with the IO31-0 since it is remapped
via the UART definitions which are different for the standard and LM13 models.

 Embedded Solutions Page 26 of 69

BASE_PP_DatIO

[$1C Data IO Port read/write]

DATA BIT DESCRIPTION

31-0 Data Out 31-0

FIGURE 13 GPIO DATA IO BIT MAP

The data to be transmitted is written to the Data Output Port side of the Data Register.
Reading from this port will return the value of the port independent of other settings.
Please see the Direct and Filtered ports for IO side data read.

The output bits are driven onto the IO for the bits that are enabled with the Direction
control register, and when the Port Selection is set to Parallel. For bits without the
Direction register bit set there are no side effects. The Direction register will act as a
mask for the data register.

 Embedded Solutions Page 27 of 69

BASE_PP_DIR

[$20 Direction Register bits 31-0 read – write]

DATA BIT DESCRIPTION

31-0 Direction 31-0

FIGURE 14 GPIO DIRECTION BIT MAP

The parallel port direction is controlled with this port. When reset this port is cleared
0x00000000. All IO are set to read [inputs]. To use one or more of the IO for outputs;
program the corresponding Direction bit(s) to ‘1’.

Once a Direction bit is set to output, the data in the corresponding output register bit is
broadcast on that IO line. If initial states are important you may want to program the
DATIO before enabling with the direction bits.

When not in parallel port mode the Direction bits are controlled by the UART.

BASE_PP_TERM

[$24 Termination Reg Port]

DATA BIT DESCRIPTION

31-0 Termination 31-0

FIGURE 15 GPIO TERMINATION REG BIT MAP

Each Termination bit corresponds to the associated IO bit. When ‘1’ the signal is
terminated. When ‘0’ the signal is not terminated. Terminations may be in the cable in
which case they would not be selected here. If not terminated in the cable, the receive
side is usually terminated for best performance. Standard termination is 100 Ohms
across the P/N differential pair. The terminations are carefully placed close to the
transceivers with length matched impedance controlled traces.

When not in parallel port mode the termination bits are controlled by the UART.

 Embedded Solutions Page 28 of 69

BASE_PP_DATRDBK

$28 Direct Data Port Read

DATA BIT DESCRIPTION

31-0 Direct 31-0

FIGURE 16 GPIO DIRECT READ BIT MAP

The IO is synchronized to the bus reference clock and made available from this port.
No filtering is performed.

BASE_PP_INTEN

[$2C Interrupt Enable Reg Port]

DATA BIT DESCRIPTION
31-0 Interrupt Enable 31-0

FIGURE 17 GPIO INTERRUPT ENABLE REG BIT MAP

Each Interrupt Enable control bit corresponds to the associated IO bit. When ‘1’ the
interrupt from that IO is enabled. Affects both Edge and Level selected IO types.

BASE_PP_RISE

$30 Rising Enable Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising 31-0

FIGURE 18 GPIO RISING ENABLE BIT MAP

The Rising control register bits correspond to the input data bits. All IO can be set-up for
COS activity even if defined as an output. Please see EdgeLevel definition register.
When set ‘1’ and the corresponding input bit transitions from low to high the COS
register of rising activity will have the corresponding bit set. If the separate interrupt
enable bit is also set an interrupt can be generated. The Rising register is a control
register. The COS data is read back separately.

 Embedded Solutions Page 29 of 69

BASE_PP_FALLE

$34 Falling Enable Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling 31-0

FIGURE 19 GPIO FALLING ENABLE BIT MAP

The Falling control register bits correspond to the input data bits. All IO can be set-up
for COS activity even if defined as an output. When set ‘1’ and the corresponding input
bit transitions from High to Low the COS register of falling activity will have the
corresponding bit set. If the separate interrupt enable bit is also set an interrupt can be
generated. The Falling register is a control register. The COS data is read back
separately.

BASE_PP_POL

[$38 Polarity Reg Port]

DATA BIT DESCRIPTION

31-0 Polarity 31-0

FIGURE 20 GPIO POLARITY REG BIT MAP

Each Polarity control bit corresponds to the associated IO bit. When ‘1’ Inverted
processing is selected. When ‘0’ non-inverted processing of the IO bit is selected.
Mostly used with Level based interrupts.

BASE_PP_EDGE

[$3C EdgeLevel Reg Port]

DATA BIT DESCRIPTION

31-0 EdgeLevel 31-0

FIGURE 21 GPIO EDGELEVEL REG BIT MAP

Each EdgeLevel control bit corresponds to the associated IO bit. When ‘1’ Edge
processing is selected. When ‘0’ level processing is selected. See Rising and Falling
control registers when Edge is selected. See Polarity registers when level is selected.

 Embedded Solutions Page 30 of 69

BASE_PP_RISINGL

$40 COS Rising Status Register Port read/write

DATA BIT DESCRIPTION

31-0 COS Rising Status 31-0

FIGURE 22 GPIO COS RISING STATUS BIT MAP

The COS Rising Edge data is available to read from this port. Write back to clear
latched data. Corresponding Rising Enable and Edge bits need to be set for proper
operation.

BASE_PP_FALLINGL

$44 COS Falling Status Register Port read/write

DATA BIT DESCRIPTION

31-0 COS Falling Status 31-0

FIGURE 23 GPIO COS FALLING STATUS BIT MAP

The COS Falling Edge data is available to read from this port. Write back to clear
latched data. Corresponding Falling Enable and Edge bits need to be set for proper
operation.

 Embedded Solutions Page 31 of 69

BASE_PP_FILDAT

$48 Filtered Data Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Filtered Data Read Back 31-0

FIGURE 24 GPIO FILTERED READ BACK BIT MAP

The IO is synchronized to the PCI reference clock, polarized and masked [POL and
EdgeLevel].

BASE_PP_HALFDIV

[$4C COS clock definition port read -write]

DATA BIT DESCRIPTION
31-16 spare
15-0 DIVISOR

FIGURE 25 GPIO COS CLK CONTROL BIT MAP

DIVISOR[15-0] are the clock divisor select bits. The clock source is divided by a 16-bit
counter. The output frequency is {reference / [2*N], n>1. The counter operates from
1 N. A pulse is generated when the counter reaches the end point, and the pulse
used to create the output clock. The output clock is a square wave as a result.

32 MHz is the reference for the divider.

For a desired frequency of 1 MHz. The required divisor is 32 => N = 16.

 Embedded Solutions Page 32 of 69

UART_CHAN_CONT

UART CHANNEL CONTROL

#define ChRstA 0x0001 // set to reset channel Tx side
#define LoopBackA 0x0002// set to loop-back FIFO data
#define TxEnable 0x0004// set to enable Tx operation
#define RxEnable 0x0008// set to enable Rx operation

#define RxErrIen 0x0010// set to enable interrupt on Error
#define TxFfAmtIen 0x0020// set to enable Transmit almost empty interrupt
#define RxFfAflIen 0x0040// set to enable Receiver almost full interrupt
#define DmaRdIEn 0x0080// set to enable DMA Interrupt Read

#define DmaWrIEn 0x0100// Set to enable DMA Interrupt Write
#define ForceInt 0x0200// set to force an interrupt from this channel
#define RxOverFlowIen 0x0400// set to enable Rx Data FIFO overflow interrupt
#define RxPckLvlIen 0x0800// set to enable Packet FIFO not empty interrupt

#define ChRstB 0x1000 // set to reset channel Rx side
#define TxBreak 0x2000 // set to cause Tx break – Space on TXD
#define Spare 0x4000 //
#define MastIntEn 0x8000// set to allow any interrupts from this channel

#define TxParityOn 0x00010000// set to use parity on Tx
#define TxParityOdd 0x00020000// set to generate odd parity when Parity is On
#define TxStopBits 0x00040000// set to transmit 2 or more stop bits
#define TxLength 0x00080000// set to transmit 8 bits cleared = 7 bit data

#define RxParityOn 0x00100000// set to use parity on Rx
#define RxParityOdd 0x00200000// set to expect odd parity when Parity is On
#define RxStopBits 0x00400000// set to expect 2 or more stop bits for framing
#define RxLength 0x00800000// set to expect 8 bits, cleared = 7 bit data

#define TxMode(0) 0x01000000// Encoded transmit type
#define TxMode(1) 0x02000000//
#define TxMode(2) 0x04000000//
#define TxParityLvl 0x08000000// Set to use level parity

#define RxMode(0) 0x10000000// Encoded receive type
#define RxMode(1) 0x20000000//
#define RxMode(2) 0x40000000//
#define RxParityLvl 0x80000000// Set to use level parity

FIGURE 26 PMC-BISERIAL-VI-UART UART CHAN CONTROL

 Embedded Solutions Page 33 of 69

ChRstA, ChRstB : When bit(s) is/are set to one, most functions within the channel are
reset. Holding registers are not reset. Memories, state-machines etc. are reset. Clear
for normal operation. The “A/B” indicates this signal is Or’d with the RST signal to make
the channel reset based on local or global resets. A for Tx Functions, B for Rx.
Software timed – leave asserted for at least one UART reference clock period.

Loop-BackA: When this bit is set to a one, any data written to the transmit FIFO will be
immediately transferred to the receive FIFO. This allows for fully testing the data FIFO’s
without connecting externally. When this bit is zero, normal operation is enabled. The
“A” indicates HW protection to require both Tx and Rx enables to be disabled to do
loop-back testing.

TxEnable when set allows the Transmit state-machine to operate. Depending on the
mode other conditions will also need to be met before transmission will begin.
TxEnable can also be set and cleared via HW. In Alternate Packet mode if the
TxTimerMode is set to affect TxEnable, the enable will be cleared at the end packet and
enabled when the timer expires. Please see those sections for more detail.

RxEnable when set allows the Receive state-machine to operate. This bit should be
set after the other pertinent parameters are programmed.

pertinent parameters: Baud Rate, FIFO levels, character level controls [parity, number
of bits etc.] When switching modes the enable should be disabled and then re-enabled
to allow the state-machine to return to idle before resuming processing. Allow several
clock periods.

RxErrIen is set to allow the error conditions of Parity, Framing, Packet FIFO overrun to
cause an interrupt to the host. When cleared the status is available but the interrupt is
not.

TxFfAmtIen is set to allow the Transmit FIFO Almost Empty condition to cause an
interrupt. When cleared the status is available but the interrupt is not. An interrupt will
be generated when the transmit FIFO level becomes equal or less than the value
specified in the TX_AMT register, provided the channel master interrupt enable is
asserted.

RxFfAftIen is set to allow the Receive FIFO Almost Full condition to cause an interrupt.
When cleared the status is available but the interrupt is not. An interrupt will be
generated when the receive FIFO level becomes equal or greater to the value specified
in the RX_AFL register, provided the channel master interrupt enable is asserted.

 Embedded Solutions Page 34 of 69

DmaRdIEn/ DmaWrIEn DMA Interrupt Enable: These two bits, when set to one, enable
the interrupts for DMA write and read completion for the referenced channel. These two
interrupts cannot be disabled by the master interrupt enable.

ForceInt is set to cause an interrupt to occur. Used for SW development and test
purposes.

RxOverFlowIen is set to allow the Rx FIFO overflow condition to cause an interrupt.
When cleared the status is available but the interrupt is not.

RxPckLvlien is set to allow the Rx Packet Received interrupt. If enabled and a Packet
Descriptor is in the Packet FIFO the interrupt is set. This is a level based interrupt.
Clear by reading the descriptors in the packet FIFO.

TxBreak when set forces the TXD line low which creates a “Break” condition on the
transmit line – forced into the spacing state. Software timed.

SelectLevel when set changes the Tx FIFO AMT and Rx FIFO AFL status reported to be level
based. When cleared the status is latched. See status register for further details.

MasterIntEn when set allows any of the programmable interrupt conditions to be
passed to the host. When cleared no interrupts are generated by this channel.

TxParityOn when set causes the transmitted data to have parity inserted. When
cleared parity is not added.

TxParityOdd when set causes odd parity when Parity is enabled and Level is not
enabled. When cleared even parity is inserted if enabled.

TxStopBits when set causes the HW to add a wait state – an extra marking state
between characters sent. The minimum is 1 stop bit [sent when TxStopBits is not set].
If another character is not ready when the current one is completed additional marking
bits will also be inserted.

TxLength when set causes 8 bit characters [considered standard] and when cleared 7
bits per byte are transmitted. The Msb is trimmed when in the 7 bit mode.

RxParityOn when set causes the receiver to expect data with parity inserted. Parity is
checked in this mode and parity errors reported. When cleared, parity is not expected
and potential framing errors captured if parity is received.

RxParityOdd when set causes odd parity to be checked when Parity is enabled and not

 Embedded Solutions Page 35 of 69

in level mode. When cleared even parity is checked if enabled.

RxStopBits when set causes the HW to expect a wait state – an extra marking state
between characters sent. The minimum is 1 stop bit [sent when RxStopBits is not set].
If a start bit is received when a second stop bit is expected a framing error will result.

RxLength when set causes 8 bit characters to be expected in the data
stream[considered standard] and when cleared 7 bits per byte are received. The data is
LSB aligned when received in 7 bit mode. Framing errors can result if 8 bit data is
received when 7 is expected and vice-versa.

TxMode 2:0
TxOneByte (TxMode “001”) when selected causes data to be transmitted based on
using only the LS byte from the FIFO [unpacked mode – standard low speed UART
operation and use with console operation].

TxPacked (TxMode “010”) When selected all 4 bytes are transmitted per LW [packed
mode – higher bandwidth but requires LW based data transfers – divisible by 4 data
frames]

TxPacketized (TxMode “011”) when selected, enables operation in Packet Mode
[Packetized]. Programming note: Packetized mode is a hybrid of the packed and
unpacked modes allowing for higher bandwidth operation via lower overhead for
medium to larger messages. Please see the packet FIFO description for more details of
using this mode.

TxAltPacketized (TxMode “100”) when selected, enables operation in the Alternate
Packet Mode. The data and control for the packet are both in the data stream in this
mode. In this mode the packet control information is embedded in the transmit data.
The advantage is the control can be DMA transferred along with the data. The
disadvantage is losing 1 byte per LW transferred to the control information.

Bytes are transferred in the same order as the other modes. 0, 1, 2.
Upper Byte Definition:
31 = last data set in packet. Set for last data set within packet, cleared otherwise.
30-29 = byte count in last data set. 01, 10, 11 are valid.
28-25 = spare
24 = Transceiver Tristate, After Packet complete [all bits sent] disable Transceiver
Enable/Tristate Transmitter [either, neither, both]. Either SW enable or Start of new
Packet [Timer expired] will re-enable.

 Embedded Solutions Page 36 of 69

TxTest (TxMode “101”) when selected, enables operation in the Test Mode. The raw
data and control are included in the same LW. The lower 16 bits contain the data. The
upper nibble is the length. The bits are sent as programmed without adding formatting
other than the marking state between characters.

When the TxTest mode is selected the transmission is governed by the FIFO Empty
status. As characters are available to transmit they are read and sent. The character
is sent LSB first. The bits are parallel loaded into a shift register and transmitted. No
HW modification in the sense of adding Start, parity and so forth.

“1111 1110 0100 0010” for example would transmit x21 with the start bit prepended
and the marking state for the remaining bits. If parity is needed it would be added after
the “2” and before the ‘1’s used for padding. The character count could be set to
anything larger than the total bit count needed. The count starts with 0 to allow F to be
all 16 locations. In the example the count could be 8 or more. If the exact length is
used the HW will not insert added bits between characters. If the count is larger than
the size of the character, additional stop bits will be added [assuming a new character is
available].

If the FIFO is empty when the terminal count is reached for the current character, the
transmission is terminated after several ‘1’s are clocked out. If the FIFO is not empty
when the bit count reaches 3 the FIFO is read and the next character and length stored
for use by the shift register and state machine. This allows rapid character
transmission when multiple characters are stored. The cost is a minimum count since
the pre-read of the next character needs to happen after the current character has been
loaded and started to prevent overwriting unsent data. The minimum count is 5 which
corresponds to 6 bits sent including a start bit.

The purpose of this mode is to allow SW to create any sort of error desired – missing
start bit, missing parity, wrong type of parity, incorrect data bit in any location, not
enough stop bits etc.

 Embedded Solutions Page 37 of 69

RxMode 2:0

RxOneByte (RxMode “001”) when selected causes the received data to be loaded one
byte per LW in the Rx Data FIFO.

RxPacked (RxMode “010”) When selected all 4 bytes are loaded per LW stored
[packed mode –requires LW based data transfers – divisible by 4 data frames]

RxPacketized (RxMode “011”) when selected causes the Rx state-machine to group
received data into packets and to load packet descriptors into the Rx Packet FIFO.
Packet lengths are automatically determined based on the programmed FrameTime.
Be sure to program this time-out if in Packet Mode for Rx.

RxAltPacketized (RxMode “100”) when selected, enables operation in the Alternate
Packet Mode. The data and control for the packet are both in the data stream in this
mode. In this mode the packet control information is embedded in the received data.
The advantage is the control can be DMA transferred along with the data. The
disadvantage is losing 1 byte per LW transferred to the control information.

Bytes are received in the same order as the other modes. 0, 1, 2.
Upper Byte Definition:
31 = last data set in packet. Set for last data set within packet, cleared otherwise.
30-29 = byte count in last data set. 00, 01, 10 are valid.
28-27 = spare
26 = Data FIFO overflow Error occurred in this packet
25 = Framing Error occurred in this packet
24 = Parity Error occurred in this packet

Notes: 1) Byte Count, when 00 means no bytes stored, message was divisible by 3,
written before end of packet detected leaving a remainder of 0. Status is set in the last
word.
2) Error bits are accumulated through the packet, and when the packet is complete;
stored into the status word. “000” for these bits would be no error. These are the
latched status bits from the status register. In this mode the status is cleared before
each new packet is received for independent reported on each packet. Similar to
Packet mode.
3) When last data set bit is not set, all three bytes have data and the count is not
loaded.

TxParityLvl when set and parity enabled causes the inserted parity to be a level with
the ODD/EVEN control determining the level. ODD forces a ‘1’ and Even forces a ‘0’.

 Embedded Solutions Page 38 of 69

RxParityLvl when set and parity enabled checks the inserted parity to be a level with
the ODD/EVEN control determining the level. ODD expects a ‘1’ and Even expects a
‘0’.

 Embedded Solutions Page 39 of 69

UART_CHAN_CONTB

UART CHANNEL CONTROL

#define BreakRiseIen 0x00000001 //0 set to enable capture of Break Detection
#define BreakFallIen 0x00000002 //1 set to enable capture of Break removal
#define BreakIen 0x00000004 //2 set to enable Break Interrupt
#define TxPckDoneIen 0x00000008 //3 set to enable Tx Packet Done Interrupt

#define DirTx 0x00000010 //4 set to enable Tx Buffers
#define TermRx 0x00000020 //5 set to enable Rx Termination
#define TermTx 0x00000040 //6 set to enable Tx Termination
#define RxPckDoneIen 0x00000080 //7 set to enable Rx Packet Done Interrupt

#define TxPckDelayMask 0x0000FF00 //15-8 8 bits to define delay for TX packets

#define TxTimerEn 0x00010000 //16 set to enable TxTimer32 Function
#define TxTimerIen 0x00020000 //17 set to enable TxTimer32 Interrupt
#define TxTimerIen 0x00020000 //17 set to enable TxTimer32 Interrupt
#define TxTimerEMsk 0x00040000 //18 TxTimer32 Enable Mask Control

#define TxTimerMask 0x00300000 //21-20 set to control behavior of

TxTimer/Tristate control
#define SelTxAmtType 0x00400000 //22 Select Tx FIFO AMT Interrupt type
#define SelRxAflType 0x00800000 //23 Select Rx FIFO AFL Interrupt type

#define DirRTS 0x01000000 //24 0 = Tristate, 1 = RTS signal driven
#define ForceRTS 0x02000000 //25 0 = normal, 1 = Force RTS to block
#define InvertFlowCntl 0x04000000 //26 0 = normal, 1 = invert RTS/CTS
#define UseCTS 0x08000000 //27 0 = ignore CTS, 1 = Use Flow Control

#define TermRTS 0x10000000 //28 0 = unterminated, 1 = terminated
#define TermCTS 0x20000000 //29 0 = unterminated, 1 = terminated

#define ReferenceSel 0x80000000 //31 0 = 32 MHz, 1 = PLL Reference

FIGURE 27 PMC-BISERIAL-VI-UART UART CHANB CONTROL

Note: All bits R/W. Undefined bits will return programmed value.

BreakRiseIen and BreakFallIen are used to select which edges of the Break detection
status are used to generate latched status. Rising is associated with Break being
asserted. Falling is associated with Break being removed.

 Embedded Solutions Page 40 of 69

BreakIen when set allows the captured [latched] status to generate an interrupt from
the a change in state of Break. Clear the interrupt by writing with the corresponding bit
set.

TxPckDoneIen when set ‘1’ gates the Tx Packet Done latched status through to
generate an interrupt. Clear the interrupt by clearing the latched status or disabling this
bit.

DirTx when set enables the external and internal buffers to transmit. Normally set to ‘1’.
When set to ‘0’ the line level will tristate.

Note: the equivalent Rx control bit is set to receive in HW.

TermRx and TermTx when set cause the RS485 connection to have a 100 ohm
resistor switched in. Analog switches are controlled to allow the parallel termination to
be applied or not. Normal is Rx enabled ‘1’ and Tx not enabled ‘0’. If terminations are
in the cable both maybe off. Under some system conditions both may need to be
enabled.

RxPckDoneIen when set ‘1’ gates the Rx Packet Done latched status through to
generate an interrupt. Clear the interrupt by clearing the latched status or disabling this
bit.

TxPckDelayMask defines the field used to determine the number of bit periods to delay
between packets when transmitting in packet mode. When set to x00 no additional
delay is added. When set to x01, 1 bit time is added. Please note the HW requires
several bit times of marking state to start a new packet when one completes. The
programmed times are in addition to this HW defined delay. The delay is applied to the
start of a packet to insure adeqate gap time when initially started. [Alt Packet Mode HW
delay = 9, Standard Packet Mode HW delay = 11]

TxTimerEn when set enables the Timer32 function to count down using the stored
Modulus. When the timer reaches 0x00 the counter reloads and repeats until disabled.
At the zero crossing a pulse is generated which is latched for status/interrupt generation
and optionally for setting the TxEnable [either the line enable, the function enable, both
or neither]

TxTimerIen when set allows the captured [latched] status to generate an interrupt from
the TxTimer32 function. See the Status register detail for the Latched Status Bit.

TxTimerEMsk when set ‘1’ TxTimer Strobe is masked with the Tx Data FIFO Empty
status. If the FIFO is Empty when the strobe is asserted, TxEnable is not set. When

 Embedded Solutions Page 41 of 69

this control bit is ‘0’ the FIFO status is not used, TxEnable is set at the end of the
TxTimer count independent of the FIFO status.

Programming note: When TxTimer32 is selected to start transmission, TxEnable is set
at the end of the programmed countdown. If not masked by the FIFO status, TxEnable
can be set without data present leading to immeditate transmission of data when data is
loaded. If the Timing strobe is required for the start of a burst of data the Mask should
be used to make sure data is only transmitted immediately after the strobe from the
timer function.

TxTimerMask defines the field used to determine the behavior of the Timer and
Alternate Packet TX Enable/Disable bit.
x00 = no affect on TriState or TxEnable
x01= Use Alternate Packet Mode to disable TxEnable and TxTimer32 to Enable
TxEnable
x10= Use Alternate Packet Mode to Tristate IO lines and enable IO lines, TxEnable not
affected
x11= Alternate Packet Mode to Tristate IO and Disable TxEnable. Timer32 to enable
TxEnable and Alternate Packet Mode to enable IO.

SelTxAmtType ‘0’ = Latched Interrupt opertion, ‘1’ = level interrupt operation.
SelRxAflType ‘1’ = Latched Interrupt opertion, ‘0’ = level interrupt operation.
Please note the opposite action of these bits. The original design had the 2 default cases
implemented. With Revision 7 PCB, 2.13 FLASH and later this feature is available. The status
register has both interrupt status type available. Be sure to reference the correct version in your
ISR.

DirRTS when set ‘1’ causes the external tristate driver to be enabled. Set this bit to use
flow control. ‘0’ can be selected when flow control is not used to save power.

ForceRTS when set ‘1’ causes the RTS signal to be disabled logically. In a standard
system RTS = ‘0’ on the line to enable data transfer. If ForceRTS set is applied the
level will be forced to ‘1’. Please note: InvertFlowCntl affects the definition. ForceRTS
always causes no data transfer when asserted regardless of the standard/inverted
selection.

The line state referenced is the P side. The N side will be in the opposite state.

InvertFlowCntl when set ‘1’ causes the definition of RTS and CTS to be inverted –
active high on the line to transfer and active low to block instead of the standard
definition of high to block and low to transfer.

UseCTS when set ‘1’ causes the transmitter [not test mode] to use the CTS signal for

 Embedded Solutions Page 42 of 69

flow control. This affects unpacked, packed, packetized, and Alternate Packetized
modes. ‘0’ will cause the transmitter to ignore the state of the CTS input.

About RTS and CTS HW implementation. RTS when in non-forced normal mode is
asserted low to allow data to transfer anytime the data level in the RX FIFO has 16
bytes or more. In unpacked mode this is 16 positions, in packed mode it is 4 since
each LW has 4 bytes – HW automatically adjusts based on the mode selected. Most
HW can stop transmitting within 12 bytes of RTS deassertion. PMC-BiSerial-VI-UART
transmit function when CTS transitions to disabled will complete the current data word
and then stop. This means 1-2 bytes in unpacked mode and up to 4 in packed,
packetized and alternate packetized modes depending on when CTS changes state.

TermRTS, TermCTS when set ‘1’ cause the terminations to be applied to the signals.
Normally the TermCTS control is set to ‘1’ and TermRTS is cleared ‘0’.

ReferenceSel when ‘0’ selects the 32 MHz oscillator for the UART clock reference.
When set ‘1’ the PLL associated with the port is used instead.
PLL Clock A is the alternate reference for ports 0,1.
PLL Clock B is the alternate reference for ports 2,3
PLL Clock C is the alternate reference for ports 4,5
PLL Clock D is the alternate reference for ports 6,7

The baud rate definitions use the selected clock to determine the frequency for transmit
and expected frequency for receive.

The design is compiled with the max PLL clock set to 64 MHz. This corresponds to 4
Mbits/sec max guaranteed on the line. We have tested at greater than 6 MBits with
success showing margin in the timing.

 Embedded Solutions Page 43 of 69

UART_CHAN_STAT

UART CHANNEL STATUS

#define TxFfMt 0x00000001 //0 Transmit FIFO Empty
#define TxFfAmt 0x00000002 //1 Almost Empty [Level]
#define TxFfFl 0x00000004 //2 Full
#define TxTimer32Lat 0x00000008 //3 Set when Timer32 function cycles

#define RxFfMt 0x00000010 //4 Receive FIFO Empty
#define RxFfAfl 0x00000020 //5 Almost Full [Level]
#define RxFfFl 0x00000040 //6 Full
#define RTSstatus 0x00000080 //7 current RTS level

#define RxParErrLat 0x00000100 //8 -- status bits in each packet descriptor and

latched here for non packet mode operation
#define RxFrameErrLat 0x00000200 //9 -- status bits in each packet descriptor and

latched here for non packet mode operation
#define RxDataOvFlLt 0x00000400 //10
#define RxPckOvFlLt 0x00000800 //11

#define DmaWrErr 0x00001000 //12 Write (Tx) DMA Error
#define DmaRdErr 0x00002000 //13 Read (Rx) DMA Error
#define DmaWrDn 0x00004000 //14 Write DMA List Complete
#define DmaRdDn 0x00008000 //15 Read DMA List Complete

#define RxPckFifoMt 0x00010000 //16 Receive Packet FIFO Empty
#define RxPckFifoFull 0x00020000 //17 Receive Packet FIFO Full
#define TxPckFifoMt 0x00040000 //18 Transmit Packet FIFO Empty
#define TxPckFifoFull 0x00080000 //19 Transmit Packet FIFO Full

#define LocalInt 0x00100000 //20 Non DMA interrupt status
#define IntStat 0x00200000 //21 All Interrupts status
#define RxPckDoneLat 0x00400000 //22 Rx Packet Done Latched
#define TxPckDoneLat 0x00800000 //23 Tx Packet Done Latched

#define TxIdle 0x01000000 //24 Tx SM Idle State
#define RxIdle 0x02000000 //25 Rx SM in Idle State
#define BurstInIdle 0x04000000 //26 Tx DMA engine in Idle State
#define BurstOutIdle 0x08000000 //27 Rx DMA engine in Idle State

#define BreakStatLat 0x10000000 //28 -- Latched COS edge of Break Condition
#define BreakStat 0x20000000 //29 -- Current Rx Break Status
#define TxAmtLt 0x40000000 //30 -- Tx Almost Empty latched status
#define RxAflLt 0x80000000 //31 -- Rx Almost Full latched status

FIGURE 28 PMC-BISERIAL-VI-UART UART STATUS

 Embedded Solutions Page 44 of 69

Transmit FIFO Empty: When a one is read, the transmit data FIFO for the
corresponding channel contains no data; when a zero is read, there is at least one data-
word in the FIFO.

Transmit FIFO Almost Empty: When a one is read, the number of data-words in the
transmit data FIFO for the corresponding channel is less than or equal to the value
written to the CHAN_FIFO_LVL register for that channel; when a zero is read, the level
is more than that value.

Transmit FIFO Full: When a one is read, the transmit data FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more data-word in the
FIFO.

TxTimer32Lat: When a one is read the TxTimer32 function has downcounted to 0x00
and set this bit. If the interrupt enable is set the associated interrupt will also be set.
Clear this bit by writing back to the status register with this bit set.

Receive FIFO Empty: When a one is read, the receive data FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one data-word in the
FIFO. Please note: the count includes the DMA pipeline and can have up to 4 words
available with an empty FIFO.

Receive FIFO Almost Full: When a one is read, the number of data-words in the receive
data FIFO for the corresponding channel is greater or equal to the value written to the
CHAN_FIFO_LVL register for that channel; when a zero is read, the level is less than
that value.

Receive FIFO Full: When a one is read, the receive data FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more data-word in the
FIFO.

RTSstatus : reflects the state of the RTS signal prior to direction control potentially tri-
stating. Affected by SW direct control, Rx Enable, and FIFO level.

Parity Error Detected: When a one is read, it indicates that a parity error has occurred
since the status was last cleared. This bit is latched and must be cleared by writing the
same bit back to the channel status port. A zero indicates that no parity error has
occurred. Parity can be programmed to be odd, even, level or not implemented. An
error indicates the received encoding does not match the programmed encoding.

 Embedded Solutions Page 45 of 69

Frame Error Detected: When a one is read, it indicates that a frame error has occurred
since the status was last cleared. This bit is latched and must be cleared by writing the
same bit back to the channel status port. A zero indicates that no frame error has
occurred. A frame error occurs when the size of the received character including
packaging does not match the programmed size.
Start bit is always 1 period wide
Data is 7 or 8 periods wide
Parity is 0 or 1 period wide
Stop Bits are either 1 or 2 minimum periods wide

Leading to the minimum character of 1+7+1 = 9 bits and the max of 1+8+1+2 = 12 bits.
The Hardware automatically determines the expected size based on the parameters.

RxDataOvFlLt when set the Rx Data FIFO has had an overflow condition – FIFO is full
when time to write the next data word. When cleared no error has occurred. This is a
latched bit and is cleared by writing back with this bit position set.

RxDataOvFlLt: when set the Rx Packet FIFO has had an overflow condition – FIFO is
full when time to write the next packet descriptor. When cleared no error has occurred.
This is a latched bit and is cleared by writing back with this bit position set.

RxPckFifoMt : When a one is read, the receive Packet FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one descriptor in the
FIFO.

RxPckFifoFl: When a one is read, the receive Packet FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more descriptor in the
FIFO.

TxPckFifoMt : When a one is read, the transmit Packet FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one descriptor in the
FIFO.

TxPckFifoFl: When a one is read, the transmit Packet FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more descriptor in the
FIFO.

Write/Read DMA List Complete: When a one is read, it indicates that the corresponding
DMA has completed. These bits are latched and must be cleared by writing the same
bit back to the channel status port. A zero indicates that the corresponding DMA has
not completed.

 Embedded Solutions Page 46 of 69

Write/Read DMA Error: When a one is read, it indicates that an error has occurred while
the corresponding DMA was in progress. This could be a target or master abort or an
incorrect direction bit in one of the DMA descriptors. These bits are latched and must
be cleared by writing the same bit back to the channel status port. A zero indicates that
no DMA error has occurred.

Tx/Rx Idle: When a ‘1’ is read, the corresponding function is in the Idle state. For
changes of mode it is best if the State Machine is in the Idle state to make sure the
mode is processed properly. Not all modes return to Idle as part of normal processing.
The unpacked and packed modes in particular do not return to Idle unles the enable is
cleared.

Write/Read DMA Idle: When a one is read the corresponding DMA State Machine is in
the IDLE state. When ‘0’ the DMA state machine is busy processing.

BreakStat is the synchronized line level of the Rx Break Status. Reading this value
returns the current state of Break Status for this channel. When set a Break is currently
in effect. When ‘0’ break is not being received. Only has meaning when receiver is
enabled and has made it through synchronization.

BreakStatLat is set when a programmed edge is captured based on the Break Status. If
the rising edge is enabled, when a Break is detected the latch is set. If the falling edge
is enabled the status is set when the status transitions low meaning the break is turned
off. This is a sticky bit, cleared by writing back with the same bit position set.

TxAmtLt is set when the Transmit Data FIFO level <= the programmed Almost Empty
number of words [set with CHAN_FIFO_LVL]. TxAmtLt is a sticky bit and is cleared by
writing back with the bit position set.

RxAflLt is set when the Receive Data FIFO level >= the programmed Almost Full
number of words [set with CHAN_FIFO_LVL]. RxAflLt is a sticky bit and is cleared by
writing back with the bit position set.

RxPckDoneLat is a sticky bit set when a packet has been received. Cleared by writing
back to the status register with this bit set. This signal can be enabled to generate an
interrupt.

TxPckDoneLat is a sticky bit set when a packet has been transmitted. Cleared by
writing back to the status register with this bit set. This signal can be enabled to
generate an interrupt.

LocalInt when set indicates one of the non DMA interrupt requests is active. This is

 Embedded Solutions Page 47 of 69

after the individual interrupt masks and before the channel master interrupt enable.

IntStatus when set indicates this channel has a pending interrupt request. DMA and
local Interrupts [after the master enable].

CHAN_TX_FIFO_CNT

TX FIFO Counts

#define CHAN_PKT_CNT_MASK_TX 00FF0000 //
#define CHAN_DATA_CNT_MASK_TX 0000FFFF //

FIGURE 29 PMC-BISERIAL-VI-UART TX FIFO COUNTS

Reading from this port returns the Packet and Data FIFO counts. The FIFO’s are 255
deep. The counts are zero extended. It is recommended to program for a 16 bit field to
allow for an increased FIFO size count without needing to change the driver.

CHAN_RX_FIFO_CNT

RX FIFO Counts

#define CHAN_PKT_CNT_MASK_RX 00FF0000 //
#define CHAN_DATA_CNT_MASK_RX 0000FFFF //

FIGURE 30 PMC-BISERIAL-VI-UART RX FIFO COUNTS

Reading from this port returns the Packet and Data FIFO counts. The FIFO’s are 255
deep. There are an additional 4 locations in the DMA pipeline leading to a total of x103
possible locations. It is recommended to program for a 16 bit field to allow for an
increased FIFO size count without needing to change the driver.

 Embedded Solutions Page 48 of 69

CHAN_TX_DMA_PNTR

Input DMA Pointer Address Port

 Data Bit Description
 31-0 First Chaining Descriptor Physical Address

FIGURE 31 CHANNEL WRITE DMA POINTER PORT

This read-write port is used to initiate a scatter-gather write [TX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain. When read the current
address is returned. Please note: this is the updated physical address where the HW is
reading data from.

The first is the address of the first memory block of the DMA buffer containing the data
to read into the device, the second is the length in bytes of that block, and the third is
the address of the next chaining descriptor in the list of buffer memory blocks. This
process is continued until the end-of-chain bit in one of the next pointer values read
indicates that it is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

The Direction should be set to ‘0’ for Burst In DMA in all chaining descriptor locations.

 Embedded Solutions Page 49 of 69

CHAN_RX_DMA_PNTR

Write only

Output DMA Pointer Address Port

 Data Bit Description
 31-0 First Chaining Descriptor Physical Address

FIGURE 32 CHANNEL READ DMA POINTER PORT

This write-read port is used to initiate a scatter-gather read [RX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain. When read the current
physical address where the HW is writing data is returned.

The first is the address of the first memory block of the DMA buffer to write data from
the device to, the second is the length in bytes of that block, and the third is the address
of the next chaining descriptor in the list of buffer memory blocks. This process is
continued until the end-of-chain bit in one of the next pointer values read indicates that it
is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘1’ for Burst Out DMA in all chaining descriptor
locations.

NOTE: The direction bit (bit 1) must be set when the physical address of the first
chaining descriptor is written to this register or a read DMA error will result.

 Embedded Solutions Page 50 of 69

CHAN_UART_FIFO

UART FIFO

#define CHAN_UART_FIFO_MASK_PACKED 0xFFFFFFFF //
#define CHAN_UART_FIFO_MASK_UNPACKED 0x000000FF //

FIGURE 33 PMC-BISERIAL-VI-UART UART FIFO

Writing to the Chan Data FIFO or UART FIFO will load data for the transmitter to utilize.
Data can be written in Packed, Unpacked, or Packetized formats.

Packed data has 4 bytes per LW loaded as shown with the corresponding Mask.

UnPacked data has 1 byte per LW loaded as shown with the corresponding Mask.

Packetized is a hybrid where Packed data is used for the data format with the exception
of the last word which has 1, 2, 3, or 4 bytes loaded. The Packet FIFO is used to
control the number of bytes sent per packet loaded.

Alternate Packetized uses up to 3 bytes per LW and the last LW has the descriptor
control built in.

Packed is the most efficient data structure in terms of bytes loaded per LW used.
Packetized comes in second and as the total number of bytes in a packet increases
becomes close to the efficiency of the Packed mode but with the flexibility of odd byte
counts.
Alternate Packetized removes the need to write to the Packet FIFO. For medium size
messages using DMA this may prove more effient than the Packetized mode.
UnPacked is the least efficient and the most flexible.

When reading from the CHAN_UART_FIFO address the data from the Rx Data FIFO is
presented. The data is packed in the same manner as described above. Packed
mode provides 32 bits per LW read, UnPacked returns data in the lower byte only, and
Packetized/ Alternate Packetized a combination of Packed(3/4) and an odd length word
depending on the size of the packet.

For non-Packed modes the non-loaded bytes are set to zero.

 Embedded Solutions Page 51 of 69

CHAN_TXFIFO_LVL

TX & RX FIFO Level

#define CHAN_TXAMT_FIFO_MASK 0x0000FFFF //

FIGURE 34 PMC-BISERIAL-VI-UART AMT LEVEL

CHAN_RXFIFO_LVL

TX & RX FIFO Level

#define CHAN_ RXAFL _FIFO_MASK 0x0000FFFF //

FIGURE 35 PMC-BISERIAL-VI-UART AFL LEVEL

The FIFO’s are 255 deep. Unused bits should be set to zero when programming.

The TX mask is used to set the threshold for the Almost Empty condition. When the
Count for the number of words in the FIFO is less than the programmed level the
Almost Empty status becomes true.

The Rx mask is used to set the threshold for the Almost Full condition. When the count
for the number of words in the Rx FIFO is equal or greater than the programmed level
the Status is set.

For internal loop-back the Tx threshold should be set to at least 0x10 and Rx threshold
set to xEF or less. The transfer engine for internal loop-back uses the almost full and
almost empty status to determine if burst mode can be used. If the threshold is too
small the transfer engine will not operate properly and attempt to do burst transfers
when the FIFO’s don’t have enough room [RX or enough data TX].

 Embedded Solutions Page 52 of 69

CHAN_FRAME_TIME

Programmable Time Out

#define CHAN_FRAME_TIME_MASK 0x00FFFFFF //

FIGURE 36 PMC-BISERIAL-VI-UART FRAME TIME

CHAN_FRAME_TIME is a programmable count to determine how long to wait without a
new character arriving for the receiver to declare “end of packet”. The count is based
on the master clock [32 MHz or PLL as programmed in each channel]. The objective
is to have a time long enough to be sure all characters belonging to a packet are
captured into the same packet and short enough to complete the packet in a timely
fashion. If the transmitter is capable of back-to-back character transmission a 2
character period would be sufficient. If the data is not so densely packed larger delays
may be desired.

 Embedded Solutions Page 53 of 69

CHAN_BAUD_RATE

TX & RX Frequency

#define CHAN_TX_BAUD_MASK 0x0000FFFF //
#define CHAN_RX_BAUD_MASK 0xFFFF0000 //

FIGURE 37 PMC-BISERIAL-VI-UART BAUD RATE

CHAN_BAUD_RATE is a programmable count to determine the frequency of operation.
The master clock is the reference which can be 32 MHz or the user programmed PLL
rate associated with this port. See Channel Control Register B. The count
programmed [N-1] determines the frequency of transmission or reception plus adjusts
some of the filtering aspects of the receiver.

Rate(based on 32 MHz) Recommended Setting [N-1 shown]
2M 15
1M 31
500K 63
250K 127
125K 255
62.5K 511
31.25K 1023
9600 3332 (9600.96 actual frequency)

Using the PLL reference can provide more exact frequencies in some cases. Setting to 1.8432 MHz and
using a divisor of 191 (192) will yield 9600 exactly.

 Embedded Solutions Page 54 of 69

CHAN_PACKET_FIFO

PACKET FIFO

#define CHAN_PKT_FIFO_MASK_TX FFFF //
#define CHAN_PKT_FIFO_MASK_RX 0FFF //

FIGURE 38 PMC-BISERIAL-VI-UART PACKET FIFO

Writing to the Chan Packet FIFO will load a descriptor into the TX Packet FIFO. The
descriptor is the number of bytes to send from the TX Data FIFO. The transmitter will
wait for additional data if the Data FIFO is empty when time to read more data to
complete a packet allowing packet sizes larger than the FIFO. Since the FIFO can be
loaded during transmission the Almost Empty Status can be used to trigger adding more
data to extend a packet. If a zero value is read the packet descriptor is ignored.
1FFFF bytes.

When reading from the Channel Packet FIFO the descriptors for the data in the Rx
FIFO are read plus the status for the packet. The lower bits 11-0 are the size of the
data in bytes and the upper bits 15-12 are the status captured for that packet.

15 RxParErrLat
14 RxFrameErrLat
13 RxDataOvFlLt
12 RxPckOvFlLt

The definitions are found in the Channel Status register description.

Packets on the receive side are limited to the size of 1FFF bytes.

Programming notes: When in Packet Mode the Channel Packet FIFO interrupt can be
used to detect when new descriptors have been written to the FIFO. If larger Packets
are anticipated, the AFL Data FIFO interrupt can be used to read the data in as it is
received and then parsed based on the descriptor when it is ready. The MT status or
count can be used if polling is preferred; to determine when the descriptor is ready.

The Frame Timer should be programmed to determine the conditions for the end of
frame. If left at the default setting packets will not be properly detected resulting in non-
optimal behavior.

 Embedded Solutions Page 55 of 69

CHAN_TX_TIMER_MOD

Tx Timer Modulus Reg

#define CHAN_TX_TIMER_MOD_MASK xFFFFFFFF //

FIGURE 39 PMC-BISERIAL-VI-UART TX MODULUS

This 32 bit R/W port stores the modulus used by TxTimer32 to define the range to count
through. The reference clock is the selected channel clock of 32 MHz or PLL. There is
a minimum count requirement of x5.

As shown in the diagram, the idea is to program the TxTimer for an interval longer than
the combination of packets and inter-packet delays. The Packets can disable
TxEnable as shown [end of Pkt3 in this case] and then be enabled by the TxTimer32
function.

Once the TxTimer32 function is enabled and running, writing to this register will cause a
reload of the counter to the new value.

Please note: the timer can also be used as a system timer if TxMode is programmed to
neither or Tristate control.

 Embedded Solutions Page 56 of 69

CHAN_TX_TIMER_CNT

Tx Timer Timer Reg

#define CHAN_TX_TIMER_CNT_MASK xFFFFFFFF //

FIGURE 40 PMC-BISERIAL-VI-UART TX TIMER CNT

This 32 bit Read Only port allows the user to monitor the current count in the TxTimer32
function. The counter operates at the PLL or 32 MHz rate as programmed for the
channel. The output is synchronized to the system reference clock.

 Embedded Solutions Page 57 of 69

LOOP-BACK & IO Connection Definitions - STD

PMC-BISERIAL-VI-UART can be used with direct end point cabling or with an interface.
Dynamic Engineering uses HDEterm68 along with loop-back connections to accomplish
loop-back. The standard version is compatible with UARTcable8 SCSI to DB9
adapter. The DB9 pinout is designed for standard RS422 cabling.

The following table shows the connections the HDEterm68 used in the loop-back test.
PMC-BiSerial-VI uses 32 Differential IO. Each UART uses 4 IO to create the TX, RX,
RTS, and CTS connections. The reference SW uses loop-back within the same
channel as a test mechanism. IO0, IO1, IO16, IO17 form UART 1.

Twisted Pair: Pins shown for P1 SCSI connector and match on HDEterm68
Numbers shown P1/Pn4 . For loop-back connections with rear IO use this table plus
the Rear IO mapping table from the PMC carrier.

UART1_TXP 1/1 UART1_RXP 2/2
UART1_TXN 35/3 UART1_RXN 36/4
UART1_CTSP 17/33 UART1_RTSP 18/34
UART1_CTSN 51/35 UART1_RTSN 52/36

UART2_TXP 3/5 UART2_RXP 4/6
UART2_TXN 37/7 UART2_RXN 38/8
UART2_CTSP 19/37 UART2_RTSP 20/38
UART2_CTSN 53/39 UART2_RTSN 54/40

UART3_TXP 5/9 UART3_RXP 6/10
UART3_TXN 39/11 UART3_RXN 40/12
UART3_CTSP 21/41 UART3_RTSP 22/42
UART3_CTSN 55/43 UART3_RTSN 56/44

UART4_TXP 7/13 UART4_RXP 8/14
UART4_TXN 41/15 UART4_RXN 42/16
UART4_CTSP 23/45 UART4_RTSP 24/46
UART4_CTSN 57/47 UART4_RTSN 58/48

 Embedded Solutions Page 58 of 69

UART5_TXP 9/17 UART5_RXP 10/18
UART5_TXN 43/19 UART5_RXN 44/20
UART5_CTSP 25/49 UART5_RTSP 26/50
UART5_CTSN 59/51 UART5_RTSN 60/52

UART6_TXP 11/21 UART6_RXP 12/22
UART6_TXN 45/23 UART6_RXN 46/24
UART6_CTSP 27/53 UART6_RTSP 28/54
UART6_CTSN 61/55 UART6_RTSN 62/56

UART7_TXP 13/25 UART7_RXP 14/26
UART7_TXN 47/27 UART7_RXN 48/28
UART7_CTSP 29/57 UART7_RTSP 30/58
UART7_CTSN 63/59 UART7_RTSN 64/60

UART8_TXP 15/29 UART8_RXP 16/30
UART8_TXN 49/31 UART8_RXN 50/32
UART8_CTSP 31/61 UART8_RTSP 32/62
UART8_CTSN 65/63 UART8_RTSN 66/64

Dynamic Engineering Drivers and Reference SW include loop-back tests using the
above connections.

 Embedded Solutions Page 59 of 69

LOOP-BACK & IO Connection Definitions – LM12, LM13

The LM12 version of PMC-BiSerial-VI is modified to incorporate IO definitions
compatible with a third party design taken EOL. [Pinout to match Abaco / Radstone
PMC-Q1F] Please note: additional signals not on the Q1F are present on the undefined
IO. The following loopback table shows the connection changes from the base model.

The design number is also updated to allow SW to determine which model is
connected.

Twisted Pair: Pins shown for P1 SCSI connector and match on HDEterm68. The
alternate color pins are the ones modifed to match the Q1F design. To make room for
UART1-4 other definitions changed too. All are marked.

UART1_TXP 2 UART1_RXP 4
UART1_TXN 36 UART1_RXN 38
UART1_CTSP 17 UART1_RTSP 18
UART1_CTSN 51 UART1_RTSN 52

UART2_TXP 8 UART2_RXP 10
UART2_TXN 42 UART2_RXN 44
UART2_CTSP 6 UART2_RTSP 20
UART2_CTSN 40 UART2_RTSN 54

UART3_TXP 13 UART3_RXP 15
UART3_TXN 47 UART3_RXN 49
UART3_CTSP 7 UART3_RTSP 22
UART3_CTSN 41 UART3_RTSN 56

UART4_TXP 19 UART4_RXP 21
UART4_TXN 53 UART4_RXN 55
UART4_CTSP 23 UART4_RTSP 24
UART4_CTSN 57 UART4_RTSN 58

 Embedded Solutions Page 60 of 69

UART5_TXP 9 UART5_RXP 5
UART5_TXN 43 UART5_RXN 39
UART5_CTSP 25 UART5_RTSP 26
UART5_CTSN 59 UART5_RTSN 60

UART6_TXP 11 UART6_RXP 12
UART6_TXN 45 UART6_RXN 46
UART6_CTSP 27 UART6_RTSP 28
UART6_CTSN 61 UART6_RTSN 62

UART7_TXP 1 UART7_RXP 14
UART7_TXN 35 UART7_RXN 48
UART7_CTSP 29 UART7_RTSP 30
UART7_CTSN 63 UART7_RTSN 64

UART8_TXP 3 UART8_RXP 16
UART8_TXN 37 UART8_RXN 50
UART8_CTSP 31 UART8_RTSP 32
UART8_CTSN 65 UART8_RTSN 66

End of LM12 connection table.

 Embedded Solutions Page 61 of 69

PMC PCI Pn1 Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn1 Interface.
See the User Manual for your carrier board for more information. Unused pins may be
assigned by the specification and not needed by this design.

 TCK -12V 1 2
GND INTA# 3 4
 5 6
BUSMODE1# +5V 7 8
 9 10
GND 11 12
CLK GND 13 14
GND 15 16
 +5V 17 18
 AD31 19 20
AD28 AD27 21 22
AD25 GND 23 24
GND C/BE3# 25 26
AD22 AD21 27 28
AD19 +5V 29 30
 AD17 31 32
FRAME# GND 33 34
GND IRDY# 35 36
DEVSEL# +5V 37 38
GND LOCK# 39 40
 41 42
PAR GND 43 44
 AD15 45 46
AD12 AD11 47 48
AD9 +5V 49 50
GND C/BE0# 51 52
AD6 AD5 53 54
AD4 GND 55 56
 AD3 57 58
AD2 AD1 59 60
 +5V 61 62
GND 63 64

FIGURE 41 PMC-BISERIAL-VI-UART PN1 INTERFACE

 Embedded Solutions Page 62 of 69

PMC PCI Pn2 Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn2 Interface.
See the User Manual for your carrier board for more information. Unused pins may be
assigned by the specification and not needed by this design.

 +12V 1 2
TMS TDO 3 4
TDI GND 5 6
GND 7 8
 9 10
 +3.3V 11 12
RST# BUSMODE3# 13 14
 +3.3V BUSMODE4# 15 16
 GND 17 18
AD30 AD29 19 20
GND AD26 21 22
AD24 +3.3V 23 24
IDSEL AD23 25 26
+3.3V AD20 27 28
AD18 29 30
AD16 C/BE2# 31 32
GND 33 34
TRDY# +3.3V 35 36
GND STOP# 37 38
PERR# GND 39 40
+3.3V SERR# 41 42
C/BE1# GND 43 44
AD14 AD13 45 46
GND AD10 47 48
AD8 +3.3V 49 50
AD7 51 52
+3.3V 53 54
 GND 55 56
 57 58
GND 59 60
 +3.3V 61 62
GND 63 64

FIGURE 42 PMC-BISERIAL-VI-UART PN2 INTERFACE

 Embedded Solutions Page 63 of 69

Applications Guide

Interfacing

Some general interfacing guidelines are presented below. Do not hesitate to contact
the factory if you need more assistance.

ESD
Proper ESD handling procedures must be followed when handling the PMC-BISERIAL-
VI-UART. The card is shipped in an anti-static, shielded bag. The card should remain
in the bag until ready for use. When installing the card the installer must be properly
grounded and the hardware should be on an anti-static workstation.

Start-up
Make sure that the "system" can see your hardware before trying to access it. Many
BIOS will display the PCI devices found at boot up on a "splash screen" with the
VendorID and CardId and an interrupt level. Look quickly, if the information is not
available from the BIOS then a third party PCI device cataloging tool will be helpful.

Watch the system grounds
All electrically connected equipment should have a fail-safe common ground that is
large enough to handle all current loads without affecting noise immunity. Power
supplies and power consuming loads should all have their own ground wires back to a
common point.

We provide the components. You provide the system. Only careful planning and
practice can achieve safety and reliability. Inputs can be damaged by static discharge,
or by applying voltage outside of the device rated voltages.

 Embedded Solutions Page 64 of 69

Construction and Reliability

Dynamic Engineering Modules are conceived and engineered for rugged industrial
environments. PMC-BISERIAL-VI-UART is constructed out of 0.062-inch thick High-
Temp ROHS compliant FR4 material.

ROHS and standard processing are available options.

Through-hole and surface-mount components are used. PMC connectors are rated at 1
Amp per pin, 100 insertion cycles minimum. These connectors make consistent, correct
insertion easy and reliable.

PMCs are secured against the carrier with four screws attached to the 2 stand-offs and
2 locations on the front panel. The four screws provide significant protection against
shock, vibration, and incomplete insertion.

The PCB provides a (typical based on PMC) low temperature coefficient of 2.17 W/C
for uniform heat. This is based upon the temperature coefficient of the base FR4

material of 0.31 W/m-C, and taking into account the thickness and area of the board.
The coefficient means that if 2.17 Watts are applied uniformly on the component side,
then the temperature difference between the component side and solder side is one
degree Celsius.

PMC-BISERIAL-VI-UART has internal thermal planes made up of heavy copper power
and ground planes. The planes will spread the thermal load over the entire board to
minimize hotspots and increase the “coolability”. The components are Industrial
temperature rated or better. Thermal vias are added under components to tie in with
the thermal plane directly. Where possible devices with thermal ties were chosen to
allow direct connection to the ground plane.

 Embedded Solutions Page 65 of 69

Thermal Considerations

The PMC-BISERIAL-VI-UART design consists of CMOS circuits. The power dissipation
due to internal circuitry is very low. It is possible to create higher power dissipation with
the externally connected logic. If more than one Watt is required to be dissipated due to
external loading, then forced-air cooling is recommended. With the one degree
differential temperature to the solder side of the board, external cooling is easily
accomplished.

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and
options. https://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected unit is
at fault. Then call the Customer Service Department for a RETURN MATERIAL
AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping
carton if this is available, and ship prepaid and insured with the RMA number clearly
written on the outside of the package. Include a return address and the telephone
number of a technical contact. For out-of-warranty repairs, a purchase order for repair
charges must accompany the return. Dynamic Engineering will not be responsible for
damages due to improper packaging of returned items. For service on Dynamic
Engineering Products not purchased directly from Dynamic Engineering contact your
reseller. Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. Customer approval
will be obtained before repairing any item if the repair charges will exceed one half of
the quantity one list price for that unit. Return transportation and insurance will be billed
as part of the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 Dubois Street, Suite B&C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

https://www.dyneng.com/warranty.html
mailto:support@dyneng.com

 Embedded Solutions Page 66 of 69

Specifications

Host Interface (PCI): PCI Interface 33 MHz. 32-bit

Serial Interfaces: 8 UART ports each with Rx,Tx, RTS, CTS signals

TX Bit-rates generated: user programmable for each UART port with the standard baud
rates up to 2M and custom programmed rates [PLL].

Software Interface: Control Registers, FIFOs, and Status Ports

Initialization: Hardware reset forces all registers to 0 except as noted

Access Modes: Long-word boundary space (see memory map)

Wait States: One for all addresses

Interrupt: Multiple programmable interrupts per channel for flow control and
error recognition.

DMA: Indendent controllers for each port TX and each port RX [16 total]

Onboard Options: All Options are Software Programmable

Interface Options : Front or Rear IO. Front IO via P1 SCSI connector. Rear IO
through Pn4.

Dimensions: Standard Single PMC.

Construction: High Temp ROHS compliant FR4 Multi-Layer Printed Circuit,

Through-Hole and Surface-Mount Components

Temperature Coefficient: 2.17 W/oC for uniform heat across PMC [similar for other formats]

Power TBD

 Embedded Solutions Page 67 of 69

Order Information

Please refer to our PMC-BISERIAL-VI-UART webpage for additional information:
 https://www.dyneng.com/PMC-BiSerial-VI.html

PMC-BISERIAL-VI-UART Standard version with 8 UARTs, each with Rx, Tx, RTS, &
CTS RS-422/485 signals supported. Programmable for
any baud rate 3.125M 150, programmable character
length[7,8], stop bits[1,2], parity[odd, even, level, none].
255x32 FIFO per Tx and Rx. Test, Packet, Alt Packet,
Packed, and UnPacked operation supported. 32 bit
system timer per port. Programmable delay to start/restart
transmission. non-ROHS assembly. Industrial
temperature components standard. 32 MHz reference
plus PLL[user frequency]

-LM12 Same as above with alternate Pinout to match Abaco
/ Radstone PMC-Q1F

-LVDS Change to LVDS IO instead of RS485.

-RIO Change to Pn4 IO instead of SCSI connector.

-CC Add conformal coating option. Recommended for
condensing or near condensing environments

-ROHS Leaded solder is standard on this product.
Add -ROHS for ROHS processing.

UARTcable8 Adapter for PMC-BiSerial-VI-UART to standard
differential UART cables [DB9 connectors] 8 ports
provided. https://www.dyneng.com/UARTcable8.html

HDEterm68 https://www.dyneng.com/HDEterm68.html is available as a
breakout or for loop-back purposes. Available with several
options including connector orientation, DIN rails, Terminal
Block, header strip.

HDEcabl68 SCSI cable suitable to interconnect PMC BiSerial III and
HDEterm68. Available in various lengths. Twisted
shielded construction.

All information provided is Copyright Dynamic Engineering

https://www.dyneng.com/PMC-BiSerial-VI.html
https://www.dyneng.com/UARTcable8.html
https://www.dyneng.com/HDEterm68.html

 Embedded Solutions Page 68 of 69

Glossary

Acronyms and other specialized names and their meaning:

PMC PCI Mezzanine Card - establishes common
connectors, connections, size and other mechanical
features.

PCI Peripheral Component Interconnect – parallel bus
from host to this device.

VendorID Manufacturers number for PCI/PCIe boards. DCBA
is Dynamic Engineering’s ID.

CardID Unique number assigned to design to distinguish
between all designs of a particular vendor.

UART Universal Asynchronous Receiver Transmitter.
Common serialized data transfer with start bit, stop
bit, optional parity, optional 7/8 bit data. Can be over
any electrical interface. RS232 and RS422 are most
common.

Baud Used as the bit period for this document. Not strictly
correct but is the common usage when talking about
UART’s.

FIFO First In First Out Memory

JTAG Joint Test Action Group – a standard used to control
serial data transfer for test and programming
operations.

TAP Test Access Port – basically a multi-state port that
can be controlled with JTAG [TMS, TDI, TDO, TCK].
The TAP States are the states in the State machine
controlled by the commands received over the JTAG
link.

 Embedded Solutions Page 69 of 69

TMS Test Mode State – this serial line provides the state
switching controls. ‘1’ indicates to move to the next
state, ‘0’ means stay put in cases where delays can
happen, otherwise 0,1 are used to choose which
branch to take. Due to complexity of state
manipulation the instructions are usually precompiled.
Rising edge of TCK valid.

TDI Test Data In - this serial line provides the data input
to the device controlled by the TMS commands. For
example the data to program the FLASH comes on
the TDI line while the commands to the state-machine
to move through the necessary states comes over
TMS. Rising edge of TCK valid.

TCK Test Clock provides the synchronization for the TDI,
TDO and TMS signals

TDO Test Data Out is the shifted data out. Valid on the
falling edge of TCK. Not all states output data.

Packet Group of characters transferred. When the
characteristics of a group of characters is known the
data can be stored in packets, transferred as such
and the system optimized as a result. Any number of
characters can be sent.

Packed When UART characters are always sent/received in
groups of 4 allowing full use of host bus / FIFO
bandwidth.

UnPacked When UART characters are sent on an unknown
basis requiring single character storage and transfer
over the host bus.

MUX Multiplexor – multiple signals multiplexed to one with
a selection mechanism to control which path is active.

Flash Non-volatile memory used on Dynamic Engineering
boards to store FPGA configurations or BIOS.

