

Win10 Driver Manual

PCIe-Spartan-VI

Dynamic Engineering
150 DuBois St. Suite B&C

Santa Cruz, CA 95060
(831) 457-8891

www.dyneng.com
sales@dyneng.com

Est. 1988

Manual Revision 01p0
 Revision Date 05/28/24

PCIe-Spartan-VI Win10 Driver Manual

ii

PCIe-Spartan-VI

Copyright© 1988-2024 Dynamic Engineering.

This document contains information of proprietary interest to Dynamic Engineering. It has been supplied in
confidence, and the recipient, by accepting this material, agrees that the subject matter will not be copied or
reproduced, in whole or in part, nor its contents revealed in any manner or to any person except to mee the

purpose for which it was delivered.
All other trademarks are the property of their respective owners.

Cautions and Warnings

The electronic equipment described herein generates, uses, and can radiate radio
frequency energy. Operation of this equipment in a residential area is likely to cause
radio interference, in which case the user, at their own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without express written approval from the president of
Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

PCIe-Spartan-VI Win10 Driver Manual

iii

Table of Contents
Design Revision History ... 1
Manual Revision History .. 1
Product Description .. 2
Software Description .. 2
Test Suite ... 3
Driver Installation ... 3
Uninstallation .. 3
API ... 3

IOCTL_PCIE_SP6_BASE_GET_INFO ... 4
IOCTL_PCIE_SP6_BASE_SET_JTAG .. 4
IOCTL_PCIE_SP6_BASE_GET_JTAG .. 4
IOCTL_PCIE_SP6_BASE_SET_CONFIG .. 5
IOCTL_PCIE_SP6_BASE_GET_CONFIG ... 5
IOCTL_PCIE_SP6_BASE_GET_STATUS ... 5
IOCTL_PCIE_SP6_BASE_SET_USER_REG .. 5
IOCTL_PCIE_SP6_BASE_GET_USER_REG ... 5
IOCTL_PCIE_SP6_CHAN_GET_INFO .. 6
IOCTL_PCIE_SP6_CHAN_SET_CONFIG ... 6
IOCTL_PCIE_SP6_CHAN_GET_CONFIG ... 7
IOCTL_PCIE_SP6_CHAN_GET_STATUS .. 7
IOCTL_PCIE_SP6_CHAN_CLEAR_STATUS .. 7
IOCTL_PCIE_SP6_CHAN_SET_FIFO_LEVELS ... 8
IOCTL_PCIE_SP6_CHAN_GET_FIFO_LEVELS ... 8
IOCTL_PCIE_SP6_CHAN_GET_FIFO_COUNTS ... 8
IOCTL_PCIE_SP6_CHAN_RESET_FIFOS ... 9
IOCTL_PCIE_SP6_CHAN_WRITE_FIFO .. 9
IOCTL_PCIE_SP6_CHAN_READ_FIFO .. 9
IOCTL_PCIE_SP6_CHAN_REGISTER_EVENT .. 9
IOCTL_PCIE_SP6_CHAN_ENABLE_INTERRUPT ... 9
IOCTL_PCIE_SP6_CHAN_DISABLE_INTERRUPT .. 10
IOCTL_PCIE_SP6_CHAN_FORCE_INTERRUPT ... 10
IOCTL_PCIE_SP6_CHAN_GET_ISR_STATUS .. 10

Write ... 10
Read ... 10

Warranty and Repair .. 11
Service Policy ... 11
Out-of-Warranty Repairs ... 11
Contact ... 11

Glossary ... 12

Figures
No table of figures entries found.
Tables
Table 1: Design Revision History ... 1
Table 2: Manual Revision History .. 1
Table 3: Header Files ... 2

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 1 of 13

Design Revision History

Table 1: Design Revision History

Revision Date Description
1p0 5/24 PCIe-Spartan-VI User programmable Spartan VI with IO

Manual Revision History

Table 2: Manual Revision History

Revision Date Description
1p0 5/28/24 Windows 10 & 11 compatible driver package

NOTE: Dynamic Engineering has made every effort to ensure that this manual is accurate and
complete; that being said, the company reserves the right to make improvements or changes
to the product described in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the application or use of the device
described herein.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 2 of 13

Product Description
The PcieS6Base and PcieS6Chan drivers are Windows device drivers for the PCIe-Spartan-VI from Dynamic
Engineering. These drivers were developed with as Windows Kernel Drivers using the KMDF.

The PCIe-Spartan-VI design has a two Xilinx Spartan-6-LX100 FPGAs. Thew BUS FPGA includes the PCI
interface, FIFOs and protocol control/status for eight channels. Sixteen byte-wide interfaces send data to and
from a second reprogrammable Spartan-VI FPGA to implement up to eight full-duplex I/O channels. The PCI
bus interfaces with an onboard PCI-to-PCIe bridge that provides a four-lane PCIe interface to the host system.
50 MHz 32 bit data path with DMA.

The USER FPGA controls the 40 RS-485/LVDS and twelve bidirectional TTL I/O lines as well as eight
programmable PLLs that can create up to 24 clocks for the I/O channels.

The Bus FPGA has sixteen DMA engines and data FIFOs to provide high-speed input and output data
transfers for the eight I/O channels. The User FPGA can be programmed either from the on-board flash or
through the Xilinx programming interface from a configuration file read from host memory. The User FPGA
can be reprogrammed at any time without powering down the system.

Each channel has 8k x 32-bit received data FIFO and an 8k x 32-bit transmit data FIFO implemented with
FPGA internal block RAM. These FIFOs can be accessed using either single-word reads or writes or DMA.

When the PCIe-Spartan-VI board is recognized by the PCI bus configuration utility it will load the PcieS6Base
driver which will create a device object for each board, initialize the hardware, create child devices for the eight
I/O channels and request loading of the PcieS6Chan driver. The PcieS6Chan driver will create a device object
for each of the I/O channels and perform initialization on each channel. IO Control calls (IOCTLs) are used to
configure the board and read status. Read and Write calls are used to move blocks of data in and out of the
I/O channel devices.

Software Description

The drivers consist of two modules, a base driver and a channel driver module, that can be loaded using the
.inf files (see below regarding installation instructions).

This package comes with a PcieS6_UserApp which is used to test the hardware as well as provide an example
of how to interface with the device through software:

Table 3: Header Files
File Name Description

ioctl.c
Defines serves as the primary API for the device and
demonstrates how to use the IOCTL calls defined in the files
below.

PcieS6_BasePublic.h Defines many of the data structures used by the Ioctl calls for
the base device.

PcieS6_ChanPublic.h
Defines many of the data structures used by the Ioctl calls for
the channel device.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 3 of 13

UserDesign.h
Defines the register map and important bits for the reference
VHDL implementation

Test Suite

The UserApp is used in-house to validate the hardware and provides a more extensive example of how to
interact with the hardware. The UserApp was written in C.

Driver Installation
Driver Installation is simple, first right-click on the PcieS6Base.inf file and click “install”, this will load the base
driver automatically and enumerate the channels in the Window’s Device Manager. Once this is installed,
follow the same step by right clicking on the PcieS6Chan.inf file and click “Install”.

Once the driver is installed on a system, the driver files are automatically copied to the “Window’s Store” (i.e., a
special directory where windows stores driver files). The driver will automatically load every time the computer
is booted.

Uninstallation
Open the device manager and navigate to the “PcieS6Chan” elements, expand the tree down by pressing the
“>” arrow. There you will see the base and channel device. Right-click on the channel device and select
“uninstall device” (IMPORTANT – once this uninstall is selected a window will pop up, check the box that says
“Delete the driver software installed for this device” (this removes the driver from the windows store). For the
second channel this pop-up will not offer the same box as the software is already removed from the store.
Finally, do the same thing with the base driver – again remembering to check the box as the base driver is a
separate piece of software that has been copied to the Window’s Store.

API
A simplified API is provided in the ioctl.h file, however these are merely wrappers around the IOCTL calls listed
below. As such, you can integrate software with the device by either incorporating the ioctl.c/h files or directly
calling the following IOCTL calls.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 4 of 13

IOCTL_PCIE_SP6_BASE_GET_INFO
Function: Returns the device driver revision, FPGA design ID and revision, user switch value, and device
instance number.
Input: None
Output: PCIE_SP6_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has been selected by
the user (see the board silk screen for bit position and polarity). Instance number is the zero-based
device number. See the definition of PCIE_SP6_BASE_DRIVER_DEVICE_INFO below.

 // Driver/Device information
typedef struct _PCIE_SP6_BASE_DRIVER_DEVICE_INFO {
 UCHAR DriverRev; // Base driver revision
 UCHAR XilinxMajor; // Xilinx Design Revision Major Field
 UCHAR XilinxMinor; // Xilinx Design Revision Minor Field
 UCHAR SwitchValue; // User switch setting
 ULONG InstanceNum; // Board instance number}
PCIE_SP6_BASE_DRIVER_DEVICE_INFO, *PPCIE_SP6_BASE_DRIVER_DEVICE_INFO;

IOCTL_PCIE_SP6_BASE_SET_JTAG
Function: Writes a to the User FPGA programming register.
Input: PCIE_SP6_BASE_JTAG
Output: None
Notes: Control TDI, TCK, TMS and programming controls

IOCTL_PCIE_SP6_BASE_GET_JTAG
Function: Returns the value of the User Programming register
Input: None
Output: PCIE_SP6_BASE_JTAG
Notes: See the definition of PCIE_SP6_BASE_JTAG below.

typedef struct _PCIE_SP6_BASE_JTAG {
 BOOLEAN JTAG_TDI; // bit 0 - Set/Clear TDI signal to User FPGA
 BOOLEAN JTAG_TCK; // bit 1 - Set/Clear TCK signal to User FPGA
 BOOLEAN JTAG_TMS; // bit 2 - Set/Clear TMS signal to User FPGA
 BOOLEAN JTAG_TDO; // bit 3 - read only TDO from User FPGA
 BOOLEAN JTAG_INIT; // bit 4 - read only Init from User FPGA
 BOOLEAN JTAG_DONE; // bit 5 - read only Done from User FPGA
 BOOLEAN JTAG_PROG; // bit 28 - PROGRAM is driven low when JTAG_PROG is set. Requires clearing
 BOOLEAN JTAG_SEL; // bit 31 - Set to use SW programming interface else User Cable
 BOOLEAN JTAG_REG; // TRUE to use Alternate Register, else BOOLEANs
 ULONG Direct; // Alternate direct register pattern
} PCIE_SP6_BASE_JTAG, * PPCIE_SP6_BASE_JTAG; IOCTL_PCIE_SP6_BASE_SET_CONFIG

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 5 of 13

IOCTL_PCIE_SP6_BASE_SET_CONFIG
Function: Sets the configuration of the base control register
Input: PCIE_SP6_BASE_CONTROL
Output: None
Notes: The bits in this register control the loading, reset and interrupt enable for the Altera FPGA.
See the bit definitions below.

IOCTL_PCIE_SP6_BASE_GET_CONFIG
Function: Reads and returns the configuration of the base control register.
Input: None
Output: PCIE_SP6_BASE_CONTROL
Notes: Returns the bits set in the previous call. See the bit definitions above.

typedef struct _PCIE_SP6_BASE_CONTROL {
 BOOLEAN UserIntEn; // User interrupt enable
 BOOLEAN ResetUser; // Reset User device
 BOOLEAN TestPointEn; // Enable test points onto Switch pins, make sure switch is in the open
position
 UCHAR TPChanSel; // Channel select for test points
} PCIE_SP6_BASE_CONTROL, *PPCIE_SP6_BASE_CONTROL;

IOCTL_PCIE_SP6_BASE_GET_STATUS
Function: Reads and returns the value of the base status register.
Input: None
Output: unsigned long integer
Notes: This register reports the interrupt status for the eight Xilinx I/O channels and the Altera. See
the bit definitions below.

See Base public file for bit definitions.

IOCTL_PCIE_SP6_BASE_SET_USER_REG
Function: Writes a 32-bit word to the USER memory space.
Input: USER_MEM_ACCESS structure
Output: None
Notes: Memory offset is relative to the USER base address (0x8000 relative to the board base
address). See the definition of USER_MEM_ACCESS below.

 // Longword Access to User memory space
typedef struct _USER_MEM_ACCESS {
 ULONG MemOffset;
 ULONG Data;
} USER_MEM_ACCESS, *PUSER_MEM_ACCESS;

IOCTL_PCIE_SP6_BASE_GET_USER_REG
Function: Reads and returns a 32-bit word from the USER memory space.
Input: Memory offset (unsigned long integer)
Output: Data (unsigned long integer)
Notes: As in the previous call, memory offset is relative to the User base address (0x8000 relative to
the Bus base address).

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 6 of 13

The IOCTLs defined for the PcieSp6Chan driver are described below:
IOCTL_PCIE_SP6_CHAN_GET_INFO
Function: Returns the driver revision and instance number of the channel device.
Input: None
Output: PCIE_USER_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of PCIE_SP6_CHAN_DRIVER_DEVICE_INFO below.

 // Driver/Device information
typedef struct _PCIE_SP6_CHAN_DRIVER_DEVICE_INFO {
 UCHAR DriverRev; // Channel driver revision
 UCHAR Channel; // Channel number
 UCHAR DesignRev; // passed
 UCHAR MinorRev; // from
 UCHAR SwitchValue; // base
 ULONG InstanceNum; // device
} PCIE_SP6_CHAN_DRIVER_DEVICE_INFO, *PPCIE_SP6_CHAN_DRIVER_DEVICE_INFO;

IOCTL_PCIE_SP6_CHAN_SET_CONFIG
Function: Sets the channel’s control configuration.
Input: PCIE_SP6_CHAN_CONFIG structure
Output: None
Notes: Specifies the enabled interrupt sources, and other control parameters. See the definitions of
PCIE_SP6_INTS, and PCIE_SP6_CHAN_CONFIG below.

typedef struct _PCIE_SP6_INTS {
 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt
 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt
 BOOLEAN RxOvflInt; // Receive FIFO overflow interrupt
 BOOLEAN TxAmtLvlInt; // Transmit FIFO almost empty level interrupt
 BOOLEAN RxAflLvlInt; // Receive FIFO almost full level interrupt
} PCIE_SP6_INTS, *PPCIE_SP6_INTS;

typedef struct _PCIE_SP6_CHAN_CONFIG {
 BOOLEAN FifoBypassEn; // Enables auto tx->rx FIFO transfer
 BOOLEAN TxEnable; // Set to enable Tx operation
 BOOLEAN RxEnable; // Set to enable Rx operation
 PCIE_SP6_INTS IntConfig; // Interrupt condition enables
} PCIE_SP6_CHAN_CONFIG, *PPCIE_SP6_CHAN_CONFIG;

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 7 of 13

IOCTL_PCIE_SP6_CHAN_GET_CONFIG
Function: Reads and returns the channel configuration set in the previous call.
Input: None
Output: PCIE_SP6_CHAN_CONFIG structure
Notes: See the definitions of PCIE_SP6_INTS, and PCIE_SP6_CHAN_CONFIG above.

IOCTL_PCIE_SP6_CHAN_GET_STATUS
Function: Reads and returns the channel’s status register bit values.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: See the Channel Public file for definitions below.

IOCTL_PCIE_SP6_CHAN_CLEAR_STATUS
Function: Clears the specified latched status bits.
Input: Latched channel status bits to clear (unsigned long integer)
Output: None
Notes: Only CHAN_STAT_TX_AMT_INT_LAT, CHAN_STAT_RX_AFL_INT_LAT,
CHAN_STAT_WR_DMA_ERR, CHAN_STAT_RD_DMA_ERR and CHAN_STAT_RX_OVFL_INT can
be cleared with this call. No other status bits are latched.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 8 of 13

IOCTL_PCIE_SP6_CHAN_SET_FIFO_LEVELS
Function: Sets the threshold levels for the transmitter almost empty and receiver almost full pulse and level
interrupts for the channel.
Input: PCIE_SP6_CHAN_FIFO_LEVELS structure
Output: None
Notes: The pulse almost empty and full interrupts are latched while the level interrupts are not.
See the definition of PCIE_SP6_CHAN_FIFO_LEVELS below.

typedef struct _PCIE_SP6_CHAN_FIFO_LEVELS {
 USHORT PulseAlmostEmpty;
 USHORT PulseAlmostFull;
 USHORT LevelAlmostEmpty;
 USHORT LevelAlmostFull;
} PCIE_SP6_CHAN_FIFO_LEVELS, *PPCIE_SP6_CHAN_FIFO_LEVELS;

IOCTL_PCIE_SP6_CHAN_GET_FIFO_LEVELS
Function: Returns the pulse and level transmitter almost empty and receiver almost full levels for the
channel.
Input: None
Output: PCIE_ALT_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call. See the definition of
PCIE_ALT_CHAN_FIFO_LEVELS above.

IOCTL_PCIE_SP6_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive data FIFOs.
Input: None
Output: PCIE_SP6_CHAN_FIFO_COUNTS structure
Notes: There is an 8k-1 data FIFO for the transmit data-path and four pipe-line latches and a two 4k-
1 data FIFOs for the receive data-path. These are counted in the FIFO counts. That means the
transmit count can be a maximum of 8191 32-bit words and the receive count can be a maximum of
8194 32-bit words. See the definition of PCIE_SP6_CHAN_FIFO_COUNTS below.

typedef struct _PCIE_SP6_CHAN_FIFO_COUNTS {
 USHORT TxCount;
 USHORT RxCount;
} PCIE_SP6_CHAN_FIFO_COUNTS, *PPCIE_SP6_CHAN_FIFO_COUNTS;

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 9 of 13

IOCTL_PCIE_SP6_CHAN_RESET_FIFOS
Function: Resets the transmit or receive or both FIFOs for the channel.
Input: PCIE_SP6_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmit or receive FIFO or both depending on the input parameter selection. See
the definition of PCIE_SP6_CHAN_FIFO_SEL below.

typedef enum _PCIE_ALT_FIFO_SEL {
 PCIE_SP6_TX,
 PCIE_SP6_RX,
 PCIE_Sp6_BOTH
} PCIE_SP6_FIFO_SEL, *PPCIE_SP6_FIFO_SEL;

IOCTL_PCIE_SP6_CHAN_WRITE_FIFO
Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_PCIE_SP6_CHAN_READ_FIFO
Function: Reads and returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_PCIE_SP6_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned from that call
as the input to this IOCTL. The driver then obtains a system pointer to the event and signals the
event when a user interrupt is serviced. The user interrupt service routine waits on this event,
allowing it to respond to the interrupt. The DMA interrupts do not cause this event to be signaled.

IOCTL_PCIE_SP6_CHAN_ENABLE_INTERRUPT
Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command is run to allow the board to respond to user interrupts. The master interrupt
enable is disabled in the driver interrupt service routine when a user interrupt is serviced. This
command must be run after each user interrupt occurs.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 10 of 13

IOCTL_PCIE_SP6_CHAN_DISABLE_INTERRUPT
Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_PCIE_SP6_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel master interrupt is
enabled. This IOCTL is used for development, to test interrupt processing.

IOCTL_PCIE_SP6_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the status that was read while servicing the last interrupt caused by one of the user-
enabled channel interrupt conditions. The interrupts that deal with the DMA transfers do not affect
this value.

Write
DMA data is written to the referenced I/O channel device using the write command. Writes are
executed using the Win32 function WriteFile() and passing in the handle to the I/O channel device
opened with CreateFile(), a pointer to a pre-allocated buffer containing the data to be written, an
unsigned long integer that represents the size of that buffer in bytes, a pointer to an unsigned long
integer to contain the number of bytes actually written, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

Read
DMA data is read from the referenced I/O channel device using the read command. Reads are
executed using the Win32 function ReadFile() and passing in the handle to the I/O channel device
opened with CreateFile(), a pointer to a pre-allocated buffer that will contain the data read, an
unsigned long integer that represents the size of that buffer in bytes, a pointer to an unsigned long
integer to contain the number of bytes actually read, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 11 of 13

Warranty and Repair
Please refer to the warranty page on our website for the warranty and options that are currently
offered.

www.dyneng.com/warranty

Service Policy
Before returning a product for repair, verify to the best of your ability, that the suspected unit is as
fault. Then call the Dynamic Engineering Customer Service Department for a Return Material
Authorization (RMA) number. Carefully package the product, in the original packaging if possible, and
ship prepaid and insured with the RMA number clearly written on the outside of the package. Include
a return address and the telephone number of a technical contact. For out-of-warranty repairs, a
purchase order for repair charges must accompany the return. Dynamic Engineering will not be
responsible for damages due to improper packaging of returned items. For service on Dynamic
Engineering products not purchased directly from Dynamic Engineering, contact your reseller.
Products returned to Dynamic Engineering for repair by anyone other than the original customer will
be treated as out-of-warranty.

Out-of-Warranty Repairs
Out-of-warranty repairs will be billed on a material and labor basis. Customer approval will be
obtained before repairing any item if the repair charges will exceed one half of the list price for one of
that kind of unit. Return transportation and insurance will be billed as part of the repair in addition to
the minimum RMA charge.

Contact:
Customer Service Department
Dynamic Engineering
150 DuBois St. Suite B&C
Santa Cruz, CA 95005
(831) 457-8891
support@dyneng.com

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 12 of 13

Glossary
Baud Used as the bit period when talking about UARTs; Not strictly correct, but is

the common usage when talking about UARTs.

CardID Unique number assigned to a design to distinguish between all designs of a
particular vendor

CFM Cubic feet per minute

FIFO First In First Out memory

Flash Non-volatile memory used on Dynamic Engineering boards to store FPGA
configurations or BIOS

JTAG Joint Test Action Group – a standard used to control serial data transfer for
test and programming operations.

LFM Linear feet per minute

LVDS Low Voltage Differential Signaling

MUX Multiplexor – multiple signals multiplexed to one with a selection
mechanism to control which path is active.

Packed When UART characters are always sent/received in groups of four, allowing
full use of host bus/FIFO bandwidth.

Packet Group of characters transferred. When the characteristics of the group of
characters is known, the data can be stored in packets and transferred as
such; the system is optimized as a result. Any number of characters can be
transferred.

PCI Peripheral Component Interconnect – parallel bus from host to this device

PIM PMC Interface Module (PIM). Provides rear I/O in cPCI systems. Mounts to
PIM Carrier

PIM Carrier PIM Mounting Device. Mounts on rear of cPCI backplane.

PMC PCI Mezzanine Card – establishes common connectors, connections, size
and other mechanical features.

TAP Test Access Port – basically a multi-state port that can be controlled with
JTAG [TMS, TDI, TDO, TCK]. The TAP States are the states in the State
Machine that are controlled by the commands received over the JTAG link.

TCK Test Clock provides synchronization for the TDI, TDO, and TMS signals

PCIe-Spartan-VI Win10 Driver Manual

Embedded Solutions Page 13 of 13

TDI Test Data in – this serial line provides the data input to the device controlled
by the TMS commands. For example, the data to program the FLASH
comes on the TDI line while the commands to the state machine to move
through the necessary states comes over TMS. Rising edge of TCK valid.

TDO Test Data Out is the shifted data out. Valid on the falling edge of the TCK.
Not all states output data.

TMS Test Mode State – this serial line provides the state switching controls. ‘1’
indicates to move to the next state, ‘0’ means stay put in cases where
delays can happen; otherwise, 0,2 are used to choose which branch to
take. Due to the complexity of state manipulation, the instructions are
usually precompiled. Rising edge of TCK valid.

UART Universal Asynchronous Receiver Transmitter. Common serialized data
transfer with start bit, stop bit, optional parity, optional 7/8 bit data. Can be
over any electrical interface. RS232 and RS422 are most common.

Unpacked When UART characters are sent on an unknown basis requiring single
character storage and transfer over the host bus

VendorID Manufacturers number for PCI/PCIe boards. DCBA is Dynamic
Engineering’s VendorID

VME Versa Module European

VPX Family of standards based on the VITA 46.0

XMC Switched mezzanine card (PMC with PCIe)

