DYNAMIC ENGINEERING

435 Park Dr., Ben Lomond, Calif. 95005 831-336-8891 Fax 831-336-3840 Web Page http://www.dyneng.com E-Mail sales@dyneng.com engineering@dyneng.com support@dyneng.com Est. 1988

User Manual

IP-BiSerial-BA3

Bi-directional Serial Data Interface IP Module

Revision A2 Corresponding Hardware: Revision A

IP-BiSerial-BA3

Bi-directional Serial Data Interface IP Module

Dynamic Engineering 435 Park Drive Ben Lomond, CA 95005 831- 336-8891 831-336-3840 FAX

©1997,1998, 1999 by Dynamic Engineering. IndustryPack is a registered trademark of GreenSpring Computers Inc.. Other trademarks and registered trademarks are owned by their respective manufactures. Manual Revision A2. Revised Jan. 28, 1999 This document contains information of proprietary interest to Dynamic Engineering. It has been supplied in confidence and the recipient, by accepting this material, agrees that the subject matter will not be copied or reproduced, in whole or in part, nor its contents revealed in any manner or to any person except to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and complete. Still, the company reserves the right to make improvements or changes in the product described in this document at any time and without notice. Furthermore, Dynamic Engineering assumes no liability arising out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and can radiate radio frequency energy. Operation of this equipment in a residential area is likely to cause radio interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Dynamic Engineering's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Dynamic Engineering.

This product has been designed to operate with IP Module carriers and compatible user-provided equipment. Connection of incompatible hardware is likely to cause serious damage.

Dynamic Engineering

Table of Contents

PRODUCT DESCRIPTION	6
THEORY OF OPERATION	8
ADDRESS MAP	11
PROGRAMMING	11
Register Definitions BIS_CNTL0 BIS_CNTL1 BIS_CNTL2 BIS_Vector BIS_STAT0 BISERIAL_RESET BIS_TX_FIFO_0_W BIS_TX_FIFO_1_W BIS_RX_FIFO_1_R BIS_RX_FIFO_1_W BIS_RX_FIFO_1_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX_FIFO_R BIS_RX	14 14 16 17 19 20 21 21 21 21 21 22 22 22 22 22 22 22 22
IP MODULE LOGIC INTERFACE PIN ASSIGNMENT	26
IP MODULE IO INTERFACE PIN ASSIGNMENT	27
APPLICATIONS GUIDE	28
Interfacing	28
Construction and Reliability	29
Dynamic Engine	ering

Thermal Considerations	30
WARRANTY AND REPAIR	30
Service Policy Out of Warranty Repairs	31 31
For Service Contact:	31
SPECIFICATIONS	32
ORDER INFORMATION	33

List of Figures

FIGURE 1	IP-BISERIAL-BA3 SERIAL TX PROTOCOL TIMING	9
FIGURE 2	IP-BISERIAL-BA3 SERIAL RX PROTOCOL TIMING	10
FIGURE 3	IP-BISERIAL-BA3 INTERNAL ADDRESS MAP	11
FIGURE 4	IP-BISERIAL-BA3 CONTROL REGISTER 0 BIT MAP	14
FIGURE 5	IP-BISERIAL-BA3 CONTROL REGISTER 1 BIT MAP	16
FIGURE 6	IP-BISERIAL-BA3 CONTROL REGISTER 2 BIT MAP	17
FIGURE 7	IP-BISERIAL-BA3 STATUS REG 0 BIT MAP	19
FIGURE 8	IP-BISERIAL-BA3 STATUS REG 1 BIT MAP	20
FIGURE 9	IP-BISERIAL-BA3 ID PROM	25
FIGURE 10	IP-BISERIAL-BA3 LOGIC INTERFACE	26
FIGURE 11	IP-BISERIAL-BA3 IO INTERFACE	27

Dynamic Engineering

Product Description

IP-BISERIAL-BA3 is part of the IP Module family of modular I/O components. The IP-BISERIAL-BA3 is capable of providing multiple serial protocols. The standard protocol implemented provides a Data, Clock and Strobe interface with Ready control. the -BA3 version is a custom modification. The main modifications include the use of a free running clock and active high strobe, falling edge true data on the transmit side, and a pulse strobe with word count for the receive side.

In addition to the BA3 version other custom interfaces are available. Please see our web page for current protocols offered. If you do not find it there we will redesign the state machines and create a custom interface protocol. That protocol will then be offered as a "standard" special order product. Please contact Dynamic Engineering with your custom application.

The IP-BISERIAL-BA3 supports both 8 and 32 Mhz. IP Bus operation. The IP Clock is used to derive the reference clocks for the serial operation. Please be sure to select the proper clock divisors and source selector after reset to insure proper operation. Please refer to the programming section for details.

Both single ended and differential I/O are available on the serial signals. The differential drivers and receivers conform to the RS-485 specification (exceeds RS-422 specification). The RS-485 input signals are terminated with 180 Ω . The single ended driver signal is characterized as an open drain driver with 24 mA of sink. For convenience A 2K Ω pull-up is supplied on board, for faster termination a second pull-up can be added at the receiving end of the circuit. Single ended signals are received through 33 Ω resistors. Care should be taken with the single ended signals. Transients can damage the board.

All configuration registers support read and write operations for maximum software convenience. Word and byte operations are supported (please refer to the memory map).

Dynamic Engineering

The IP-BISERIAL-BA3 conforms to the VITA standard. This guarantees compatibility with multiple IP Carrier boards. Because the IP may be mounted on different form factors, while maintaining plug and software compatibility, system prototyping may be done on one IP Carrier board, with final system implementation on a different one.

The serial receive channel is supported by a 1K by 16 bit FIFO. The FIFO supports byte and word reads. A byte wide write path exists for loopback testing. The serial receive channel looks for data in 16 bit transfers. The received words are then loaded into the FIFOs. The data length loaded is determined by the size programmed into the CNTL2 register. The host can poll or wait for the message complete interrupt. The message can be read directly from the input FIFO.

The Output channel has a separate $1k \ge 16$ FIFO. The FIFO can be written as words or bytes. The upper and lower bytes are read together and sent as a 16 bit data word. The FIFO can be accessed directly for loop back testing. The data is available in a byte wide format when looped back.

The IP-BISERIAL-BA3 can create an external reference clock. Several rate divisors are selectable. Please refer to the clock selection section within the programming section for details.

Interrupts are supported by the IP-BISERIAL-BA3. The interrupt occurs at the end of the transmission whether data is received or sent or both. The interrupts are individually maskable. The vector is user programmable by a read/write register. The interrupt occurs on IntReqO. The FIFO status is available for the FIFO making it possible to operate in a polled mode.

Theory of Operation

The IP-BISERIAL-BA3 is designed for the purpose of transferring data from one point to another with a serial protocol.

The IP-BISERIAL-BA3 features a Xilinx FPGA. The FPGA contains all of the registers and protocol controlling elements of the BISERIAL design. Only the drivers, receivers, boot PROM and FIFOs are external to the Xilinx device.

The IP-BISERIAL-BA3 is a part of the IP Module family of modular I/O products. It meets the IP Module Vita Standard. Contact Dynamic Engineering for a copy of this specification. It is assumed that the reader is at least casually familiar with this document and logic design. In standard configuration it is a Type 1 mechanical with no components on the back of the board and one slot wide.

The bus interface to the host CPU is controlled by a logic block within the Xilinx device that contains the decoding and timing elements required to interface to the IP bus interface. The timing is referenced to the 8 or 32 MHz IP logic clock. The IP responds to the ID, INTSEL, and IO selects. The DMA and MEM control lines are connected to the Xilinx for future revisions, and are not used at this time. The BISERIAL design requires wait states for read or write cycles to any address. Hold cycles are supported as required by the host processor. Data remains enabled during a read until the host removes the SEL line. Local timing terminates a write cycle prior to the SEL being deasserted. If no hold cycles are requested by the host, the IP-BISERIAL-BA3 is capable of supporting 16+ MB per second data transfer rate with a 32 Mhz. reference rate.

The serial I/O can support many protocols. The -BA3 timing is shown in the next diagram. The clock is free running, the data is valid on the falling edge of the clock, and strobe frames the data.

A pair of state machines within the FPGA control all transfers between the FIFO and FPGA, and the FPGA and the data buffers. The TX state machine reads from the transmit FIFOs and loads the shift registers before sending the data. The Rx state machine receives data from the data buffers and takes care of moving data from the shift register into the Rx FIFO.

FIGURE 1

IP-BISERIAL-BA3 SERIAL TX PROTOCOL TIMING

When the start bit is detected high to begin the transfer, the data is read from the TX FIFO and loaded into the shift register. The MSB is then present at the output of the data buffer. The Strobe is activated at the same time. One half clock period later the Falling edge of the data clock is driven to the output clock buffer. One half clock period later the data is transitioned to the next value. The MSB-1 is now on the data lines. The process repeats until the first word is transferred. Assuming that there is data to be sent in the lower FIFO a second word is read and loaded into the shift register and sent out onto the bus. The process is repeated until that word is transferred. The transfer will continue until either FIFO is empty when it is time to load. The data stream is continuous.

The TX engine also produces the synchonization pulse. The pulse comes at a 2500 uS interval. If desired the transmission can be synchronized to the timing pulse plus a known delay. The options are programmable in the control registers.

The receive function is very similar. When the Strobe is detected high and the clock active then data is loaded into the receive shift register on the falling edge of the data clock. Once a word has been received the data is loaded into the receive FIFO. When the receive counter matches the

preprogrammed data length the reception stops and an interrupt is generated to the host [if enabled].

The receiver checks for over-run errors. If an error is detected the appropriate bit in STAT1 is set, an interrupt is generated, and the reception aborts.

A counter keeps track of the number of words received. The counter counts once per 16 bit word received. The count to terminate a transfer is programmed into CNTL2. When the counter output matches the latch count value the receiver stops receiving. The counter is 8 bits wide.

Address Map

Function		Offset	Width	Туре
BIS_CNTL0 BIS_CNTL1	EQU Fou	\$00 \$02	byte on word boundary	read/write
BIS CNTL2	EOU	\$04	word on word boundary	read/write
BIS_VECTOR	EQU	\$06	byte on word boundary	read/write
BIS_STAT0	EQU	\$08	byte on word boundary	read
BIS_STAT1	EQU	\$0A	byte on word boundary	read
BIS_RESET	EQU	\$0E	word	write
BIS_TX_FIFO_0_W BIS_TX_FIFO_1_W BIS_TX_FIFO_0_R BIS_TX_FIFO_1_R	EQU EQU EQU EQU	\$10 \$11 \$10 \$14	D158 byte or word D70 byte byte on word boundary byte on word boundary	write write read read
BIS_RX_FIFO_0_W BIS_RX_FIFO_1_W BIS_RX_FIFO_0_R BIS_RX_FIFO_1_R	EQU EQU EQU EQU	\$20 \$24 \$20 \$21	byte on word boundary byte on word boundary D158 byte or word D70 byte	write write read read
BISERIAL_IDPROM	EQU	\$80	byte on word boundary	read

FIGURE 3

IP-BISERIAL-BA3 INTERNAL ADDRESS MAP

The address map provided is for the local decoding performed within the IP-BISERIAL-BA3. The addresses are all offsets from a base address. The carrier board that the IP is installed into provides the base address and controls the "naming of the bytes". We refer to the bytes following Motorola conventions..i.e. upper is D15-D8 and lower is D7-D0. When byte wide data is located on the lower byte then an odd address results or the use of a word access using only the lower byte of data. We prefer the word oriented approach because it is more consistent accross platforms.

Programming

Programming the IP-BISERIAL-BA3 requires only the ability to read and write data in the host's I/O space. The base address is determined by the

Dynamic Engineering

IP Carrier board. This documentation refers to the address where the IO space for the slot that the IP is installed in as the base address.

In order to receive data the software is only required to enable the RX state machine and FIFOs. If desired, the interrupt can be enabled and the interrupt vector written to the vector register. Data will be loaded into the FIFOs as it is received.

A typical sequence would be to first write to the vector register with the desired interrupt vector. For example \$40 is a valid user vector for the Motorola 680x0 family. Please note that some carrier boards do not use the interrupt vector. The interrupt service routine should be loaded and the mask should be set. When the start bit is set the hardware looks to make sure that the strobe is not active then begins looking for it to be active. In this manner the data received is protected from joining midmessage. Once a new strobe assertion is detected the data loading process begins. When the terminal count is detected the interrupt request is asserted to let the host know that the data is available. The software can read the data from the FIFOs efficiently based on the preprogrammed word count.

The end of transmission interrupt will indicate to the software that the message has been started and that the message has terminated. If both the TX and RX interrupts are enabled then the SW needs to read BIS_STAT1 to see which source caused the interrupt. Reading BIS_STAT1 will clear the interrupt status, and the INTACK cycle will clear the actual interrupt. The interrupt status can be read after the INTACK cycle. It is a good idea to read the status register to force the RX_INT and TX_INT bits to O before Start is enabled to insure that the RX_INT or TX_INT=1 value read by the interrupt service routine came from the current operation.

Before transmitting data the FIFOs are enabled and the data loaded. The BA3 design uses an internal reference. The baud rate selections are used to select the output rate. CLK_HI must be set to the proper level. CLK_HI selects [or not] the prescaler. Alternate baud rates are available if CLK_HI is set mis-matched to the IP reference rate. The strobe width can be programmed to be standard or short to cause errors for test purposes. Once the complete message is loaded and the controls set properly the start bit can be set to cause the transfer to begin. If a slow clock rate is

selected and a long message is to be sent then data can be loaded during transmission to save operational time. Care must be taken to make sure that the FIFOs do not become empty. When the TX interrupt is received the transmission has been completed and another message can be loaded. All that needs to happen with a second message is to load the FIFO and set the start bit.

Messages longer than 2K bytes can be accomodated by special ordering HW with larger FIFOs or by using the MT and Full flags on the FIFOs to poll during the transfer...fill the tx FIFO and when not full add more data until full. On the receive side poll and when not empty read the data until empty. the PAE and PAF flags are not implemented in the standard version of the hardware, but could be used to provide an almost empty interrupt to allow the TX side to operate in an interrupt driven mode with longer messages. Similarly the PAF could be used to provide an almost full interrupt to the receive side host to allow interrupt driven long message capability.

Refer to the Theory of Operation section above and the Interrupts section below for more information regarding the exact sequencing and interrupt definitions.

Register Definitions

BIS_CNTLO

\$00 BISERIAL Control Register Port read/write

	CONTROL REGISTER 0	
DATA BIT	DESCRIPTION	
7 6 5 4 3 2 1 0	CLK_HI_B EXT_INT R2 R1 R0 INT_SET INT_EN_TX STRT_TX	

FIGURE 4

IP-BISERIAL-BA3 CONTROL REGISTER 0 BIT MAP

1. All bits are active high and are reset on power-up or reset command.

2. CLK_HI_B is used to let the HW know which IP reference clock is present to derive the TX Clock rate from. If running at 32 Mhz. CLK_HI_B should be set. If not set when the faster IP clock is used then the baud rates will all be off by a factor of 4 [lower than actual]. Depending on cable length the faster rates may work. If set when the IP clock rate is 8 Mhz then the Baud rates will also be a factor of 4 off [faster than actual].

3. EXT_INT is used to select the clock source for the transmitter to be the external clock or one derived from the IP clock. O = internal, 1 = external. Connected but untested in this version leave "O".

Dynamic Engineering

4. R2, R1 and RO are the bit rate selection bits for generating the external reference clock. and the TX transmit clock.

Bit Pattern	Divisor	clk hi & 32 or !clk hi & 8
000	1	default = 4 MHz.
001	2	2 MHz.
010	4	1 Mhz.
011	8	500 KHz.
100	16	250 KHz.
101	32	125 KHz.
110	64	62.5 KHz.
111	128	31.25 Khz.

5. INT_SET us used to create an interrupt for test and software development purposes. Set the bit to cause the interrupt and clear the bit to remove the interrupt.

6. INT_EN_TX is the Interrupt Enable bit for the Transmit channel. The default state is off. If enabled and the master interrupt enable is also enabled then an interrupt is requested when the transmission is complete. The interrupt is cleared by reading the status register.

7. STRT_TX is set to send data. The bit is auto cleared at the end of a transmission.

Dynamic Engineering

BIS_CNTL1

[\$02 BISERIAL Control Register Port read/write

	CONTROL REGISTER 1
DATA BIT	DESCRIPTION
7 6 5 4 3 2 1 0	CLR_FIFO SPARE CLK_HI_WS SEL_LVL SEL_PULSE STROBE_WIDTH INT_EN_RX STRT_RX

FIGURE 5

IP-BISERIAL-BA3 CONTROL REGISTER 1 BIT MAP

1. CLR_FIFO is used to reset the FIFOs. The default state is reset. The FIFOs must be taken out of reset to be used to store data. Please refer to FTX_LD and FRX_LD [control reg 2].

2. CLK_HI_WS is used to let the hardware know which rate IP clock is present. If the card is plugged into a carrier board directly then the selection can remain 'O' for no inserted waitstates. If the card is being tested on an extender cable then the waitstate should be selected with a value of '1'. The hardware only inserts waitstates if the bit is set, and it is a read cycle.

3. INT_EN_RX is used to enable the receive interrupt. The default is disabled. If enabled and the master interrupt enable is also enabled then an interrupt is requested when the Strobe returns to the off state [1]. The interrupt is cleared by reading the status register.

4. STRT_RX is used to enable the receive state machine to receive messages. Unlike the transmit state machine the start bit is not autocleared at the end of a transmission.

5. STROBE_WIDTH when set to 1 causes the TX state machine to generate a shorter than standard strobe width and should cause a framing error on the receiver side.

6. SEL_PULSE when set to O [default] selects pulse output on the IMUSYSSYNC driver. A 4 uS low going pulse with a 2.5 milli-second interpulse gap is generated. When set to 1 the output is set to a level determined by the SEL_LVL control bit. When set to O SEL_LVL has no effect.

7. SEL_LVL controls the state of the IMUSYSSYNC output when the SEL_PULSE bit is set to 1. If SEL_LVL is 0 then IMUSYSSYNC outputs as high and if 1 IMUSYSSYNC output is low.

BIS_CNTL2

[\$04 BISERIAL Control Register Port read/write

CONT	TROL REGISTER 2
DATA BIT	DESCRIPTION
15-8 7 6 5 4 3 2	RX Count Value TESTMODE INT_EN FRX_LD FTX_LD SYNC SEL
$\frac{1}{0}$	TXTTL_422 RXTTL_422

FIGURE 6

IP-BISERIAL-BA3 CONTROL REGISTER 2 BIT MAP

1. TESTMODE is used to select the reference clock to the TX and RX FIFOs. In test mode a faster clock is provided to the FIFOs to allow the interface to keep up with the IP Bus requirements. Default is O. Normal operation is O.

2. INT_EN is the master interrupt enable. Default is O. If set to 1 then either the RX or TX interrupts can occur based on the state machines and the state of the RX and TX interrupt enables. If the master interrupt enable is off [O] then no interrupts will be generated. The status register can see the interrupt requests from the RX and TX state machines to allow

polled operation.

3. FRX_LD is tied to the RX FIFO WE2/_LD pin. FTX_LD is tied to the TX FIFO WE2/_LD pin.When the FIFOs are taken out of reset it is possible to set-up the FIFO to accept commands to program the way the programmable almost empty and programmable almost full signals operate. *In the standard transfer mode these pins are set hi before CLR_FIFO is released to use as a second WE control pin*. If the PAE and PAF flags are used for a different protocol then the FIFOs will require programming.

4. SYNC_SEL O = normal, 1 = wait for sync pulse timing to transmit. Note that if SEL_PULSE is set to 1 in CNTL1 then a pulse will not be generated and the transmission will not occur even if the level control is used to simulate a pulse. Once the SEL_PULSE is returned to O the transmission will occur on the next syncronization point.

5. TXTTL_422 is the control used to select whether a TTL input of RS422 [485] input should be used for the RDY signal in the TX state machine. The default state is 422. A '1' selects TTL. Set to 0 for BA-3 use.

6. RX_TTL_422 is the control bit to select whether the data, clock, and strobe should be received as TTL or 422 signals. Default state = 0 = 422 [485] a '1' selects TTL inputs. Set to 0 for BA-3 use.

7. RX Count Value. Load with number of 16 bit words to receive. Range 1-255. D15 is MSB.

Page

18

BIS_Vector

[\$06] BISERIAL Interrupt Vector Port

[\$08] BISERIAL Statue Port [read only]

The Interrupt vector for the BISERIAL is stored in this byte wide register. This read/write register is initialized to 'xxFF' upon power-on reset or software reset. The vector is stored in the odd byte location [D7..0]. The vector should be initialized before the interrupt is enabled or the mask is lowered. The interrupt is automatically cleared when the CPU acknowledges the interrupt.

BIS_STATO

		[i edu offiy]
Data Bit	Status	
8	CLK_SEL_RX	1 = external clock source for Receiver, 0 = internal
7	RX_STB	1 = reception in progress
6	TX_STB	1 = transmission in progress
5	FTX_MT_0	0 = empty 1 = not empty
4	FTX_MT_1	0 = empty 1 = not empty
3	FTX_FF_0	0 = full, 1 = not full
2	FRX_MT_0	0 = empty, 1 = not empty
1	FRX_FF_0	0 = full 1 = not full
0	FRX_FF_1	0 = full 1 = not full

FIGURE 7

IP-BISERIAL-BA3 STATUS REG 0 BIT MAP

1. RX_STB & TX_STB are indicators that a data transfer is in progress. The RX_STB is only a pulse for the BA3 implementation.

2. The FIFO flags are active low. When the empty bit is low then the FIFO is empty. When the empty flag is high then the FIFO has at least one piece of data stored. When the Full Flag is set [low] the FIFO is full. When not set then the FIFO still has room.

3. CLK_SEL_RX is an indication of which reference clock the receiver is utilizing. If set then the external clock has been detected and used. If cleared then the external clock is not present and the local 8mhz clock is used instead. If the internal reference is used, transactions will process

normally, but the data will be incorrect. This mode was added to keep the state-machine from becoming stuck when the external clock is not active.

BIS_STAT1	
[\$0A] BISERIAL Status Port [read only]	

Data Bit	Status	
0	TX_INT	1 = Interrupt pending
1	RX_INT	1 = Interrupt pending
2	unused	read '0'
3	unused	read '0'
4	Over Run Error	1 = error detected
5	unused	read '0'
6	unused	read '0'
7	unused	read '0'

FIGURE 8

IP-BISERIAL-BA3 STATUS REG 1 BIT MAP

1. RX_INT & TX_INT are set when the respective interrupt conditions exist and the interrupts are enabled. The master interrupt can be disabled and still have the benefit of the status. The status is cleared when read.

2. Over Run errors are tested for when a reception is in progress. If detected then the status bit is set and the reception is aborted. Cleared on read of STAT1.

BISERIAL_RESET

[\$OE] BISERIAL Reset Port

The user can, by accessing this port, cause the BISERIAL to reset all major functions. The Control register, and FIFO's are cleared by a write to this port. Any data pattern can be written.

BIS_TX_FIF0_0_W

[\$10] BISERIAL FIFO byte O write

The BISERIAL supports byte writes to the data FIFOs. By writing a byte to this address only byte_O is affected. D15..8 are loaded at this address. Word writes will load both TX FIFOs.

BIS_TX_FIFO_1_W

[\$11] BISERIAL FIFO byte 1 write

The BISERIAL supports byte writes to the TX FIFOs. By writing a byte to this address only byte_1 is affected. If a word is written to BIS_TX_FIFO_O_W this byte is loaded as well.

BIS_TX_FIF0_0_R

[\$10] BISERIAL FIFO byte O write

A loopback path is provided for the TX FIFOs to allow the host to read the data stored in the TX FIFOs. Both bytes are read back through the lower byte lane [D7..O]. Reading from this address fetches from the upper FIFO byte. Be sure to set the clock to Testmode before reading from this register. *Once the data is read from the FIFO the data is no longer available for transmission*.

BIS_TX_FIFO_1_R

[\$14] BISERIAL FIFO byte O write

A loopback path is provided for the TX FIFOs to allow the host to read the data stored in the TX FIFOs. Both bytes are read back through the lower byte lane [D7..O]. Reading from this address fetches from the lower FIFO byte. Be sure to set the clock to Testmode before reading from this register. *Once the data is read from the FIFO the data is no longer available for transmission.*

Dynamic Engineering

BIS_RX_FIFO_O_W

[\$20] BISERIAL FIFO byte O write

A loopback path is provided for the RX FIFOs to allow the host to load data into the RX FIFOs. Both bytes are written through the lower byte lane [D7..0]. Writing to this address loads the upper RX FIFO. This operation competes with and should not be performed during normal operation.

BIS_RX_FIFO_1_W

[\$24] BISERIAL FIFO byte 1 write

A loopback path is provided for the RX FIFOs to allow the host to load data into the RX FIFOs. Both bytes are written through the lower byte lane [D7..0]. Writing to this address loads the lower RX FIFO. This operation competes with and should not be performed during normal operation.

BIS_RX_FIFO_O_R

[\$20] BISERIAL FIFO byte O read The data stored into FIFO_O can be accessed through this port. Byte and word accesses are available. A word access will fetch data from both FIFO O and FIFO 1.

BIS_RX_FIFO_1_R

[\$21] BISERIAL FIFO byte 1 read The data stored into FIFO 1 can be accessed through this port. Only byte wide accesses are supported.

Dynamic Engineering

Interrupts

All IP Module interrupts are vectored. The vector from the IP-BISERIAL-BA3 comes from a vector register loaded as part of the initialization process. The vector register can be programmed to any 8 bit value. The default value is \$FF which is sometimes not a valid user vector. The software is responsible for choosing a valid user vector.

The IP-BISERIAL-BA3 state machines generate an interrupt request when a transmission or reception is complete and the INTEN bits in the control registers are set. The transmission is considered complete when the strobe line is deactivated. The interrupt is mapped to interrupt request O. The CPU will respond by asserting INT. The hardware will automatically supply the appropriate interrupt vector and clear the request when accessed by the CPU. The source of the interrupt is obtained by reading BIS_STAT1. The status remains valid until the status register is read. The interrupt status is auto-cleared when the status register is accessed.

Some carrier boards prefetch data. If your carrier board prefetches the interrupt status then the status may be cleared when the SW goes to look at it. If this is an issue then reading the BIS_STAT1 before BIS_STATO is usually a solution.

The interrupt level seen by the CPU is determined by the IP Carrier board being used. The master interrupt can be disabled or enabled through the BIS_CNTL2 register. The individual enables for TX and RX are controlable through BIS_CNTL0 and BIS_CNTL1. The enable operates before the interrupt holding latch which stores the request for the CPU. Once the interrupt request is set, the way to clear the request is to reset the board, service the request, or disable the interrupt. Toggling the interrupt enable low will clear the interrupt, the interrupt enable can be set back to enabled immediately. TX_INT_EN enables and clears the TX interrupt and RX_INT_EN enables and clears the RX interrupt request.

If operating in a polled mode and making use of the interrupts for status then the master interrupt should be disabled and the Rx or TX or both enabled. When BIS_STAT1 shows and interrupt pending the appropriate

Dynamic Engineering

FIFO action can take place and the enable toggled to remove the interrupt request then one extra read of the BIS_STAT1 to make sure that the interrupt request is cleared before starting the next transfer. Reading the BIS_STAT1 register does clear the interrupt status, but if the source of the status is still pending [interrupt request] then the status can become set again before the SW has a chance to clear it out. Hence the necessity of one extra read for clearing purposes.

Power on initialization will provide a cleared interrupt request, interrupts disabled, and interrupt vector of \$FF.

ID PROM

Every IP contains an ID PROM, whose size is at least 32 x 8 bits. The ID PROM aids in software auto configuration and configuration management. The user's software, or a supplied driver, may verify that the device it expects is actually installed at the location it expects, and is nominally functional. The ID PROM contains the manufacturing revision level of the IP. If a driver requires that a particular revision be present, it may check for it directly.

The location of the ID PROM in the host's address space is dependent on which carrier is used. Normally the ID PROM space is directly above the IPs I/O space, or at IP-base + 80. Macintosh drivers use the ID PROM automatically.

Standard data in the ID PROM on the IP-BISERIAL-BA3 is shown in the figure below. For more information on IP ID PROMs refer to the IP Module Logic Interface Specification, available from Dynamic Engineering.

Each of the modifications to the IP-BiSerial-IO board will be recorded with a new code in the DRIVER ID location. -BA3 is set to '3'.

	Address	Data	
	01	ASCII "I" (\$49)	
	03	ASCII "P" (\$50)	
	05	ASCII "A" (\$41)	
	07	ASCII "H" (\$48)	
	09	Manufacturer ID (\$1E)	
	0B	Model Number (\$01)	
	0D	Revision (\$A2)	
	0F	reserved (00)	
	11	Driver ID, low byte (03)	
	13	Driver ID, high byte (00)	
	15	No of extra bytes used (0C)	
	17	CRC (17)	
1			

FIGURE 9

IP-BISERIAL-BA3 ID PROM

Dynamic Engineering

IP Module Logic Interface Pin Assignment

The figure below gives the pin assignments for the IP Module Logic Interface on the IP-BISERIAL-BA3. Pins marked n/c below are defined by the specification, but not used on the IP-BISERIAL-BA3. Also see the User Manual for your carrier board for more information.

GND		GND		1		26	
	CLK		+5V		2		27
Reset*		R/W*		3		28	
	D0		IDSEL*		4		29
D1		n/c		5		30	
	D2		MEMSEL*	-	6	0.1	31
D3	2-	n/c		7	0	32	51
25	D4	11/ 0	IntSel*	,	8	5=	33
D5	21	n/c	intoor	9	0	34	55
D	D6	11/ 0	IOSel*	/	10	51	35
D7	DU	n/c	100001	11	10	36	57
D,	D8	11/ 0	A1	11	12	50	37
D9	DO	n/c		13	12	38	57
27	D10	11/ 0	Δ2	19	14	50	30
D11	010	n/c	112	15	11	40	57
DII	D12	11/ C	43	19	16	10	41
D13	012	IntReal	*	17	10	42	11
015	D14	mineqe	Δ4	17	18	12	43
D15	1/11	n/c	111	10	10	44	15
D 1)	B\$0*	11/ C	45	17	20	-1-1	45
BS1 *	000	n/c	11)	21	20	46	T)
131	n/c	11/ C	n/c	21	22	10	47
n/c	11/ U	Ack*	11/ C	72	22	/18	· 1 /
11/ C	1517	ACK	nla	25	24	40	40
CND	τjv	CND	11/ C	25	24	50	49
GND		GND		25		50	

NOTE 1: The no-connect signals above are defined by the IP Module Logic Interface Specification, but not used by this IP. See the Specification for more information.

NOTE 2: The layout of the pin numbers in this table corresponds to the physical placement of pins on the IP connector. Thus this table may be used to easily locate the physical pin corresponding to a desired signal. Pin 1 is marked with a square pad on the IP Module.

FIGURE 10

IP-BISERIAL-BA3 LOGIC INTERFACE

Dynamic Engineering

IP Module IO Interface Pin Assignment

The figure below gives the pin assignments for the IP Module IO Interface on the IP-BISERIAL-BA3. Pins marked. Also see the User Manual for your carrier board for more information.

GND		ICSDTSY	(+	1		26	
	REFCLK_422+		ICSDTSY-		2		27
REFCLK	_422-	GND		3		28	
	GND		RX_RDY_TTL		4		29
TX_RD	Y_422+	GND		5		30	
	TX_RDY_422-		RX_DATA_TTL		6		31
GND		GND		7		32	
	IMUTXDA+		RX_CLK_TTL		8		33
IMUTX	DA-	GND		9		34	
	GND		RX_STB_TTL		10		35
IMUTX	CLK+	GND		11		36	
	IMUTXCLK-		TX_RDY_TTL		12		37
GND		GND		13		38	
	IMUTXDATRDY	<u>{</u> +	GND		14		39
IMUTX	DATRDY-	N/C		15		40	
	GND		GND		16		41
IMUSYS	SYNC-	GND		17		42	
	IMUSYSSYNC+		TX_DTA_TTL		18		43
GND		GND		19		44	
	ICSDTDA+		GND		20		45
ICSDTE	DA-	TX_CLK	_TTL	21		46	
	GND		GND		22		47
ICSDTCK+ GND		GND		23		48	
	ICSDTCK-		TX_STB_TTL		24		49
GND		GND		25		50	

NOTE 1: The layout of the pin numbers in this table corresponds to the physical placement of pins on the IP connector. Thus this table may be used to easily locate the physical pin corresponding to a desired signal. Pin 1 is marked with a square pad on the IP Module.

FIGURE 11

IP-BISERIAL-BA3 IO INTERFACE

BA3 uses the 422 versions of data, clock and strobe.

Dynamic Engineering Hardware and Software Design • Manufacturing Services Page 27

Applications Guide

Interfacing

Some general interfacing guidelines are presented below. Do not hesitate to contact the factory if you need more assistance.

Watch the system grounds. All electrically connected equipment should have a fail safe common ground that is large enough to handle all current loads without affecting noise immunity. Power supplies and power consuming loads should all have their own ground wires back to a common point.

Power all system power supplies from one switch. Connecting external voltage to the IP-BISERIAL-BA3 when it is not powered can damage it, as well as the rest of the host system. This problem may be avoided by turning all power supplies on and off at the same time. Alternatively, the use of OPTO-22 isolation panels is recommended.

Keep cables short. Flat cables, even with alternate ground lines, are not suitable for long distances. IP-BISERIAL-BA3 does not contain special input protection.

We provide the components. You provide the system. Safety and reliability can be achieved only by careful planning and practice. Inputs can be damaged by static discharge, by applying voltage less than ground or more than +5 volts with the IP powered. With the IP unpowered, driven input voltages should be kept within .7 volts of ground potential.

Terminal Block. We offer a high quality 50 screw terminal block that directly connects to the flat cable. The terminal block mounts on standard DIN rails.

Many flat cable interface products are available from third party vendors to assist you in your system integration and debugging. These include

connectors, cables, test points, 'Y's, 50 pin in-line switches, breakout boxes, etc.

Construction and Reliability

IP Modules were conceived and engineered for rugged industrial environments. The IP-BISERIAL-BA3 is constructed out of 0.062 inch thick FR4 material.

Through hole and surface mounting of components are used. IC sockets use gold plated screw machine pins. High insertion and removal forces are required, which assists in the retention of components. If the application requires unusually high reliability or is in an environment subject to high vibration, the user may solder the corner pins of each socketed IC into the socket, using a grounded soldering iron.

The IP Module connectors are keyed and shrouded with Gold plated pins on both plugs and receptacles. They are rated at 1 Amp per pin, 200 insertion cycles minimum. These connectors make consistent, correct insertion easy and reliable.

The IP is secured against the carrier with four metric M2 stainless steel screws. The heads of the screws are countersunk into the IP. The four screws provide significant protection against shock, vibration, and incomplete insertion. For most applications they are not required.

The IP Module provides a low temperature coefficient of 0.89 W/ 0 C for uniform heat. This is based upon the temperature coefficient of the base FR4 material of 0.31 W/m- 0 C, and taking into account the thickness and area of the IP. The coefficient means that if 0.89 Watts are applied uniformly on the component side, then the temperature difference between the component side and solder side is one degree Celsius.

Dynamic Engineering Hardware and Software Design • Manufacturing Services Page 29

Thermal Considerations

The BISERIAL design consists of CMOS circuits. The power dissipation due to internal circuitry is very low. It is possible to create a higher power dissipation with the externally connected logic. If more than one a Watt is required to be dissipated due to external loading then forced air cooling is recommended. With the one degree differential temperature to the solder side of the board external cooling is easily accomplished.

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects in workmanship and materials under normal use and service and in its original, unmodified condition, for a period of one year from the time of purchase. If the product is found to be defective within the terms of this warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic Engineering's sole option to replace, the defective product. The product must be returned by the original customer, insured, and shipped prepaid to Dynamic Engineering. All replaced products become the sole property of Dynamic Engineering.

Dynamic Engineering's warranty of and liability for defective products is limited to that set forth herein. Dynamic Engineering disclaims and excludes all other product warranties and product liability, expressed or implied, including but not limited to any implied warranties of merchandisability or fitness for a particular purpose or use, liability for negligence in manufacture or shipment of product, liability for injury to persons or property, or for any incidental or consequential damages.

Dynamic Engineering's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the suspected unit is at fault. Then call the Customer Service Department for a RETURN MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping carton if this is available, and ship prepaid and insured with the RMA number clearly written on the outside of the package. Include a return address and the telephone number of a technical contact. For out-of-warranty repairs, a purchase order for repair charges must accompany the return. Dynamic Engineering will not be responsible for damages due to improper packaging of returned items. For service on Dynamic Engineering Products not purchased directly from Dynamic Engineering for repair by other than the original customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The current minimum repair charge is \$100. Customer approval will be obtained before repairing any item if the repair charges will exceed one half of the quantity one list price for that unit. Return transportation and insurance will be billed as part of the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department Dynamic Engineering 435 Park Dr. Ben Lomond, CA 95005 831-336-8891 831-336-3840 fax InterNet Address support@dyneng.com

Page

31

Specifications

Logic Interface:	IP Module Logic Interface
Serial Interface:	RS-485 RDY, Data, CLK, STB, SYNC OUT
TX CLK rates generated:	4 MHz, 2 Mhz, 1 MHz, 500 KHz, 250 KHz, 125 KHz, 62.5 KHz, 31.25 KHz
Software Interface:	Control Register, ID PROM, Vector Register, Status Port, FIFO
Initialization:	Hardware Reset forces all registers to 0. Software Reset Command resets the control register, and FIFO's.
Access Modes:	Word or Byte in I/O Space (see memory map) Word in ID Space Vectored interrupt
Access Time:	back-to-back cycles in 500ns (8Mhz.) or 125 nS (32 Mhz.) to/from FIFO
Wait States:	1 to ID space, 2 or 3 to IO or INT space depending on CLK_HI_WS selection
Interrupt:	Tx interrupt at end of transmission Rx interrupt at end of transmission
DMA:	No Logic Interface DMA Support implemented at this time
Onboard Options:	All Options are Software Programmable
Interface Options:	50 pin flat cable 50 screw terminal block interface User cable
Dimensions:	Standard Single IP Module. 1.8 x 3.9 x 0.344 (max.) inches
Construction:	FR4 Multi-Layer Printed Circuit, Through Hole and Surface Mount Components. Programmable parts are socketed.
Temperature Coefficient:	0.89 W/ ^O C for uniform heat across IP
Power:	Max. 220 mA @ 5V

Order Information

IP-BISERIAL-BA3	IP Module with 1 Tx and 1 Rx serial channel, Programmable data rates Standard protocol support, RS-485 drivers and receivers 16 bit IP interface
Tools for IP-BISERIAL-BA3	IP-Debug-Bus - IP Bus interface extender IP–Debug-IO - IO connector breakout

All information provided is Copyright Dynamic Engineering

