
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

PMC-Biserial-VI-OSEH

Windows 10 WDF Driver
Documentation

Developed with Windows Driver Foundation
Ver1.19

Revision 01p2
Corresponding Hardware: Revision 03+

10-2015-0603

 Embedded Solutions Page 2

PMC-Biserial-VI-OSEH
WDF Device Drivers for the
PMC-BiSerial-VI-OSEH

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with PMC carriers
and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2019-2021 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.
Revised 1/26/21.

 Embedded Solutions Page 3

INTRODUCTION 4

DRIVER INSTALLATION 5

Windows 10 Installation 5

IO Controls 6
IOCTL_PMC_BIS6_OSEH_GET_INFO 7
IOCTL_PMC_BIS6_OSEH_LOAD_PLL_DATA 7
IOCTL_PMC_BIS6_OSEH_READ_PLL_DATA 8
IOCTL_PMC_BIS6_OSEH_SET_BASE_CONFIG 8
IOCTL_PMC_BIS6_OSEH_GET_BASE_CONFIG 9
IOCTL_PMC_BIS6_OSEH_GET_STATUS 10
IOCTL_PMC_BIS6_OSEH_START_TX 11
IOCTL_PMC_BIS6_OSEH_STOP_TX 11
IOCTL_PMC_BIS6_OSEH_START_RX 11
IOCTL_PMC_BIS6_OSEH_STOP_RX 11
IOCTL_PMC_BIS6_OSEH_SET_FIFO_LEVELS 12
IOCTL_PMC_BIS6_OSEH_GET_FIFO_LEVELS 12
IOCTL_PMC_BIS6_OSEH_GET_FIFO_COUNTS 13
IOCTL_PMC_BIS6_OSEH_RESET_FIFOS 13
IOCTL_PMC_BIS6_OSEH_WRITE_FIFO 13
IOCTL_PMC_BIS6_OSEH_READ_FIFO 13
IOCTL_PMC_BIS6_OSEH_REGISTER_EVENT 14
IOCTL_PMC_BIS6_OSEH_ENABLE_INTERRUPTS 14
IOCTL_PMC_BIS6_OSEH_DISABLE_INTERRUPTS 14
IOCTL_PMC_BIS6_OSEH_FORCE_INTERRUPT 15
IOCTL_PMC_BIS6_OSEH_GET_ISR_STATUS 15

Write 16

Read 16

WARRANTY AND REPAIR 17

Service Policy 17
Support 17

For Service Contact: 17

Table of Contents

 Embedded Solutions Page 4

Introduction
The PmcBis6Oseh driver was developed with the Windows Driver Foundation
version 1.19 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

PMC-BiSerial-VI-OSEH has a Spartan6 Xilinx FPGA to implement the PCI
interface, FIFOs and protocol control and status for one serial channel in and one
serial channel out. Each channel uses three RS-485 signals: clock, serial data
and reference clock. There is a programmable PLL with two clock outputs. One
drives the internal clock reference for the transmit state machine, the other is
output on IO line 18 to be connected to IO line 2 to simulate the external clock
reference. There are two 128 x 32-bit external data FIFOs, one each for the
transmit and receive data. Each external FIFO is bracketed by two 4k x 32-bit
internal data FIFOs for a total of 132k 32-bit words for transmit and receive
functions.

UserApp is a stand-alone code set with a simple and powerful menu plus a
series of tests that can be run on the installed hardware. Each of the tests
execute calls to the driver, pass parameters and structures, and get results back.
With the sequence of calls demonstrated, the functions of the hardware are
utilized for loop-back testing. The software is used for manufacturing test at
Dynamic Engineering. The test software can be ported to your application to
provide a running start. The regtest’s are simple and will quickly demonstrate the
end-to-end operation of your application making calls to the driver and interacting
with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system.

When PMC-BiSerial-VI-OSEH is recognized by the PCI bus configuration utility it
will start the OSEH driver to allow communication with the device. IO Control
calls (IOCTLs) are used to configure the board and read status. Read and Write
calls are used to move blocks of data in and out of the device.

 Embedded Solutions Page 5

Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the PMC-BiSerial -
VI-OSEH user manual (also referred to as the hardware manual).

Driver Installation
There are several files provided in each driver package. These files include
PmcBis6OsehPublic.h, PmcBis6Oseh.inf, pmcbis6oseh.cat, and
PmcBis6Oseh.sys.

PmcBis6OsehPublic.h is the C header file that defines the Application Program
Interface (API) for the PmcBis6Oseh driver. This file is required at compile time
by any application that wishes to interface with the drivers, but is not needed for
driver installation.

Windows 10 Installation
Copy PmcBis6Oseh.inf, pmcbis6oseh.cat, and PmcBis6Oseh.sys (Win10
version) to a CD or USB memory device as preferred.

With the PMC-BiSerial-VI-OSEH hardware installed, power-on the PCI host
computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver
Software.
• Insert the disk or memory device prepared above in the desired drive.
• Select Browse my computer for driver software.
• Select Let me pick from a list of device drivers on my computer.
• Select Next.
• Select Have Disk and enter the path to the device prepared above.
• Select Next.
• Select Close to close the update window.
The system should now display the PmcBis6Oseh PCI adapter in the Device
Manager.

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 6

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in PmcBis6OsehPublic.h. See main.c in the
PmcBis6OsehUserApp project for an example of how to acquire a handle to the
device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a
multiple board environment. The integrator can hardcode for single board
systems or use an automatic loop to operate in multiple board systems without
using user interaction. For multiple user systems it is suggested that the board
number is associated with a switch setting so the calls can be associated with a
particular board from a physical point of view.

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win32 function DeviceIoControl(), and passing in the handle
to the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header
file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
structure
); // used for asynchronous I/O

 Embedded Solutions Page 7

The IOCTLs defined for the PMC-BISERIAL-VI-OSEH driver are described
below:

IOCTL_PMC_BIS6_OSEH_GET_INFO

Function: Returns the device driver version, Xilinx flash revision, PLL device ID, user
switch value, and device instance number.
Input: None
Output: PMC_BIS6_OSEH_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that
has been selected by the user (see the board silk screen for bit position and
polarity). Instance number is the zero-based device number. See the definition
of OSEH_DRIVER_DEVICE_INFO below.

// Driver/Device information
typedef struct _PMC_BIS6_OSEH_DRIVER_DEVICE_INFO {
 UCHAR DriverVersion;
 UCHAR XilinxVerMajor;
 UCHAR XilinxVerMinor;
 UCHAR SwitchValue;
 ULONG InstanceNumber;
 UCHAR PllDeviceId;
} PMC_BIS6_OSEH_DRIVER_DEVICE_INFO, *PPMC_BIS6_OSEH_DRIVER_DEVICE_INFO;

IOCTL_PMC_BIS6_OSEH_LOAD_PLL_DATA
Function: Writes to the internal registers of the PLL.
Input: PMC_BIS6_OSEH_PLL_DATA structure
Output: None
Notes: The PMC_BIS6_OSEH_PLL_DATA structure has only one field: Data –
an array of 40 bytes containing the PLL register data to write. See below for the
definition of PMC_BIS6_OSEH_PLL_DATA.

 // Structures for IOCTLs
#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _PMC_BIS6_OSEH_PLL_DATA {
 UCHAR Data[PLL_MESSAGE_SIZE];
} PMC_BIS6_OSEH_PLL_DATA, *PPMC_BIS6_OSEH_PLL_DATA;

 Embedded Solutions Page 8

IOCTL_PMC_BIS6_OSEH_READ_PLL_DATA
Function: Reads and returns the contents of the internal registers of the PLL.
Input: None
Output: PMC_BIS6_OSEH_PLL_DATA structure
Notes: The PLL register data is returned in the PMC_BIS6_OSEH_PLL_DATA
structure in an array of 40 bytes. See definition of
PMC_BIS6_OSEH_PLL_DATA above.

IOCTL_PMC_BIS6_OSEH_SET_BASE_CONFIG
Function: Writes the base configuration register on the PMC-BiSerialVI-Oseh.
Input: PMC_BIS6_OSEH_SET_CONFIG structure
Output: None
Notes: The Base Configuration register data is set with the
PMC_BIS6_OSEH_SET_CONFIG structure. See the bit definitions of
PMC_BIS6_OSEH_SET_CONFIG below.

typedef struct _PMC_BIS6_OSEH_BASE_SET_CONFIG {
 BOOLEAN TxIntEn;
 BOOLEAN RxIntEn;
 BOOLEAN TxAmtIntEn;
 BOOLEAN RxAflIntEn;
 BOOLEAN ExtClockSel;
 BOOLEAN FifoBypass;
 BOOLEAN TxClrDisable;
} PMC_BIS6_OSEH_BASE_SET_CONFIG, *PPMC_BIS6_OSEH_BASE_SET_CONFIG;

 Embedded Solutions Page 9

IOCTL_PMC_BIS6_OSEH_GET_BASE_CONFIG
Function: Returns the configuration of the base control register.
Input: None
Output: PMC_BIS6_OSEH_GET_CONFIG structure
Notes: The Base Configuration register data is returned in the
PMC_BIS6_OSEH_GET_CONFIG structure. See the bit definitions of
PMC_BIS6_OSEH_GET_CONFIG below.

typedef struct _PMC_BIS6_OSEH_BASE_GET_CONFIG {
 BOOLEAN TxIntEn;
 BOOLEAN RxIntEn;
 BOOLEAN TxAmtIntEn;
 BOOLEAN RxAflIntEn;
 BOOLEAN ExtClockSel;
 BOOLEAN FifoBypass;
 BOOLEAN TxClrDisable;
 BOOLEAN WrDmaIntEn;
 BOOLEAN RdDmaIntEn;
 BOOLEAN TxEnable;
 BOOLEAN RxEnable;
 BOOLEAN MIntEn;
} PMC_BIS6_OSEH_BASE_GET_CONFIG, *PPMC_BIS6_OSEH_BASE_GET_CONFIG;

 Embedded Solutions Page 10

IOCTL_PMC_BIS6_OSEH_GET_STATUS
Function: Returns the status register value and clears the latched status bits.
Input: None
Output: Value of status register (unsigned long integer)
Notes: Returns FIFO, IO and interrupt status. If any of the latched bits are set
when thee status is read, this call will explicitly clear only those bits. See the bit
definitions below for information on interpreting this value.

#define STATUS_TX_FF_MT 0x00000001
#define STATUS_TX_FF_AE 0x00000002
#define STATUS_TX_FF_FL 0x00000004
#define STATUS_RX_FF_MT 0x00000010
#define STATUS_RX_FF_AF 0x00000020
#define STATUS_RX_FF_FL 0x00000040
#define STATUS_RX_VALID 0x00000080
#define STATUS_TX_INT 0x00000100
#define STATUS_RX_INT 0x00000200
#define STATUS_RX_OVFL 0x00000400
#define STATUS_LOC_INT 0x00000800
#define STATUS_WR_DMA_ERR 0x00001000
#define STATUS_RD_DMA_ERR 0x00002000
#define STATUS_WR_DMA_INT 0x00004000
#define STATUS_RD_DMA_INT 0x00008000
#define STATUS_TX_AE_LAT 0x00010000
#define STATUS_RX_AF_LAT 0x00020000
#define STATUS_INT_ACTIVE 0x80000000

#define STATUS_FIFO_MASK (STATUS_TX_FF_MT | STATUS_TX_FF_AE | STATUS_TX_FF_FL |\
 STATUS_RX_FF_MT | STATUS_RX_FF_AF | STATUS_RX_FF_FL |\
 STATUS_RX_VALID)

#define STATUS_LATCH_MASK (STATUS_TX_INT | STATUS_WR_DMA_ERR | STATUS_TX_AE_LAT |\
 STATUS_RX_INT | STATUS_RD_DMA_ERR | STATUS_RX_AF_LAT |\
 STATUS_RX_OVFL)

 Embedded Solutions Page 11

IOCTL_PMC_BIS6_OSEH_START_TX
Function: Enables the transmit state-machine to start sending data.
Input: None
Output: None
Notes: If the transmit FIFO already has data in it, this command will start the
serial data transmission. If the FIFO is empty, the transmit state-machine will
wait for data to be written to the FIFO. As soon as the first data-word is written
the transmission will begin. If the BASE_TX_CLR_DISABLE bit in the base
control register is not set, the transmit enable will automatically clear when the
FIFO data is exhausted. If this bit is set, the transmission will pause, waiting for
more data to be written into the FIFO.

IOCTL_PMC_BIS6_OSEH_STOP_TX
Function: Disables the transmit state-machine.
Input: None
Output: None
Notes: Use this call to disable the serial data transmission.

IOCTL_PMC_BIS6_OSEH_START_RX
Function: Enables the receive state-machine to start receiving data.
Input: None
Output: None
Notes: When the receiver is enabled, a serial data bit is received for each low to
high clock transition. When 32 bits have been received the data-word is written
to the receive FIFO and the process continues until the receiver is disabled.

IOCTL_PMC_BIS6_OSEH_STOP_RX
Function: Disables the receive state-machine.
Input: None
Output: None
Notes: Use this call when data reception is no longer desired.

 Embedded Solutions Page 12

IOCTL_PMC_BIS6_OSEH_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full FIFO levels.
Input: PMC_BIS6_OSEH_FIFO_LEVELS structure
Output: None
Notes: The FIFO levels are used to determine at what data count the TX almost
empty and RX almost full status bits are asserted. The counts are compared to
the word counts of the first internal transmit FIFO and the last internal receive
FIFO. Each of these FIFOs can contain up to 4095 long words, so the fields of
the structure should be between 0x000 and 0xFFF. See the definition of
PMC_BIS6_OSEH_FIFO_LEVELS below.

typedef struct _PMC_BIS6_OSEH_FIFO_LEVELS {
 USHORT TxAlmostEmpty;
 USHORT RxAlmostFull;
} PMC_BIS6_OSEH_FIFO_LEVELS, *PPMC_BIS6_OSEH_FIFO_LEVELS;

#define FIFO_AFL_DEF_CNT 0x00000E00 // Rx almost full level -> 7/8 full
#define FIFO_AMT_DEF_CNT 0x00000200 // Tx almost empty level -> 1/8 full

IOCTL_PMC_BIS6_OSEH_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels.
Input: None
Output: PMC_BIS6_OSEH_FIFO_LEVELS structure
Notes: Returns the current values for the transmit almost empty and receive
almost full FIFO levels. See the definition of PMC_BIS6_OSEH_FIFO_LEVELS
above.

 Embedded Solutions Page 13

IOCTL_PMC_BIS6_OSEH_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive FIFOs.
Input: None
Output: PMC_BIS6_OSEH_FIFO_COUNTS structure
Notes: There are two 4k internal FIFOs and one 128k external FIFO in each of
the receiver and transmitter data paths. In addition there is a four-deep pipeline
at the output of the receive FIFO chain that is required for DMA processing and a
single data latch at the output of the transmit FIFO chain. Accounting for inter-
FIFO latches, this means that the total transmit FIFO data is a maximum of
139,264 (0x22000) 32-bit words and the total receive FIFO data is 139,267
(0x22003) 32-bit words. The PMC_BIS6_OSEH_FIFO_COUNTS structure
contains four fields. TxFF0Count and RxFF0count are the word-counts of the
internal FIFOs used to determine the almost empty and almost full status;
TxTotalCount and RxTotalCount are the combined counts of the entire data
paths. See the definition of PMC_BIS6_OSEH_FIFO_COUNTS below.

typedef struct _PMC_BIS6_OSEH_FIFO_COUNTS {
 USHORT TxFF0Count;
 ULONG TxTotalCount;
 USHORT RxFF0Count;
 ULONG RxTotalCount;
} PMC_BIS6_OSEH_FIFO_COUNTS, *PPMC_BIS6_OSEH_FIFO_COUNTS;

IOCTL_PMC_BIS6_OSEH_RESET_FIFOS
Function: Resets all transmit and receive FIFOs.
Input: None
Output: None
Notes: Resets the TX and RX FIFO chains.

IOCTL_PMC_BIS6_OSEH_WRITE_FIFO
Function: Writes a single 32-bit data-word to the TX FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: This call and the following call are used to make single-word accesses to
the FIFOs.

IOCTL_PMC_BIS6_OSEH_READ_FIFO
Function: Reads and returns a single 32-bit data word from the RX FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes:

 Embedded Solutions Page 14

IOCTL_PMC_BIS6_OSEH_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The user creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced by the driver. The user-defined interrupt service routine waits on this
event, allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled unless they are explicitly enabled in the enable
interrupts call.

IOCTL_PMC_BIS6_OSEH_ENABLE_INTERRUPTS
Function: Enables the DMA and/or master interrupts.
Input: PMC_BIS6_OSEH_INT_SELECT structure
Output: None
Notes: PMC_BIS6_OSEH_INT_SELECT structure has three BOOLEAN
members. When WrDmaDoneInt is true, an event that has been registered with
the previous call, will be signaled when a write DMA completes. Similarly, when
RdDmaDoneInt is true, the event will be signaled upon the completion of a read
DMA. This behavior will persist until explicitly disabled with the
IOCTL_PMC_BIS6_OSEH_DISABLE_INTERRUPTS call. MasterInt enables all
the other interrupts (TX, RX, FIFO levels etc.). The master interrupt is cleared in
the interrupt service routine and must be re-enabled using this call after an
interrupt (other than a DMA interrupt) has been serviced. See the definition of
PMC_BIS6_OSEH_INT_SELECT below.

typedef struct _PMC_BIS6_OSEH_INT_SELECT {
 BOOLEAN MasterInt;
 BOOLEAN WrDmaDoneInt;
 BOOLEAN RdDmaDoneInt;
} PMC_BIS6_OSEH_INT_SELECT, *PPMC_BIS6_OSEH_INT_SELECT;

IOCTL_PMC_BIS6_OSEH_DISABLE_INTERRUPTS
Function: Disables the DMA and/or master interrupt.
Input: PMC_BIS6_OSEH_INT_SELECT structure
Output: None
Notes: This call is used when DMA or user interrupt processing is no longer
desired. See the definition of PMC_BIS6_OSEH_INT_SELECT above.

 Embedded Solutions Page 15

IOCTL_PMC_BIS6_OSEH_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the master
interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_PMC_BIS6_OSEH_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled interrupt conditions.

 Embedded Solutions Page 16

Write
PMC-BiSerialVI-OSEH DMA data is written to the device using the write
command. Writes are executed using the Win32 function WriteFile() and passing
in the handle to the device opened with CreateFile(), a pointer to a pre-allocated
buffer containing the data to be written, an unsigned long integer that represents
the size of that buffer in bytes, a pointer to an unsigned long integer to contain
the number of bytes actually written, and an optional pointer to an Overlapped
structure for performing asynchronous I/O.

It should be noted that asynchronous IO has not been tested. The size of buffer
in bytes should fall on a long word boundary. The total number of writes should
not exceed the number that fit in the FIFO. Writing more than will fit into the
FIFO will result in data being dropped [overflow]. Fit means locations remaining
in the FIFO at the time of the write command.

Read
PMC-BiSerialVI-OSEH DMA data is read from the device using the read
command. Reads are executed using the Win32 function ReadFile() and
passing in the handle to the device opened with CreateFile(), a pointer to a pre-
allocated buffer that will contain the data read, an unsigned long integer that
represents the size of that buffer in bytes, a pointer to an unsigned long integer to
contain the number of bytes actually read, and an optional pointer to an
Overlapped structure for performing asynchronous I/O.

It should be noted that asynchronous IO has not been tested. The size of buffer
in bytes should fall on a long word boundary. The total number of reads should
not exceed the number of data in the FIFO. Reading more than stored will result
in duplicated data [underflow].

 Embedded Solutions Page 17

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

