
DYNAMIC ENGINEERING 
150 DuBois, Suite C 

Santa Cruz, CA 95060 
(831) 457-8891   Fax (831) 457-4793 

http://www.dyneng.com 
sales@dyneng.com 

Est. 1988 
 
 
 
 
 
 
 
 

PMC BiSerial3 RL1 
 

Software Manual 
 

Driver Documentation 
 

Developed with Windows Driver Foundation Ver1.9 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Manual Rev A1 
Flash Rev C 

10-2005-0205 

http://www.dyneng.com/
mailto:dedra@dyneng.com


               Em b ed d ed  So lu t io n s                 Page   2  

PmcBis3Rl1 
WDF Device Drivers for the 
PMC Biserial 3 Rl1 

Dynamic Engineering 

150 DuBois, Suite C 

Santa Cruz, CA 95060 

(831) 457-8891 

FAX: (831) 457-4793 

This document contains information of proprietary interest to 
Dynamic Engineering. It has been supplied in confidence and the 
recipient, by accepting this material, agrees that the subject 
matter will not be copied or reproduced, in whole or in part, nor 
its contents revealed in any manner or to any person except to 
meet the purpose for which it was delivered. 
 
Dynamic Engineering has made every effort to ensure that this 
manual is accurate and complete. Still, the company reserves 
the right to make improvements or changes in the product 
described in this document at any time and without notice. 
Furthermore, Dynamic Engineering assumes no liability arising 
out of the application or use of the device described herein. 
 
The electronic equipment described herein generates, uses, and 
can radiate radio frequency energy. Operation of this equipment 
in a residential area is likely to cause radio interference, in which 
case the user, at his own expense, will be required to take 
whatever measures may be required to correct the interference. 
 
Dynamic Engineering’s products are not authorized for use as 
critical components in life support devices or systems without the 
express written approval of the president of Dynamic 
Engineering. 
 
This product has been designed to operate with PMC modules 
and compatible user-provided equipment. Connection of 
incompatible hardware is likely to cause serious damage. 

©2018 by Dynamic Engineering. 
 
Trademarks and registered trademarks are owned by their respective 
manufactures. 
Manual Revision A. Revised October 10, 2018. 



               Em b ed d ed  So lu t io n s                 Page   3  

Table of Contents

 

INTRODUCTION 4 

DRIVER INSTALLATION 5 

Windows 7 Installation 5 

IO Controls 6 
IOCTL_PMC_BIS3_RL1_BASE_GET_INFO 7 
IOCTL_PMC_BIS3_RL1_BASE_LOAD_PLL_DATA 7 
IOCTL_PMC_BIS3_RL1_BASE_READ_PLL_DATA 8 
IOCTL_PMC_BIS3_RL1_CHAN_GET_INFO 8 
IOCTL_PMC_BIS3_RL1_SET_CHAN_CONFIG 8 
IOCTL_PMC_BIS3_RL1_GET_CHAN_STATE 9 
IOCTL_PMC_BIS3_RL1_CHAN_GET_STATUS 10 
IOCTL_PMC_BIS3_RL1_CHAN_SET_FIFO_LEVELS 10 
IOCTL_PMC_BIS3_RL1_CHAN_GET_FIFO_LEVELS 10 
IOCTL_PMC_BIS3_RL1_CHAN_GET_FIFO_COUNT 11 
IOCTL_PMC_BIS3_RL1_CHAN_RESET_FIFOS 11 
IOCTL_PMC_BIS3_RL1_CHAN_WRITE_FIFO 12 
IOCTL_PMC_BIS3_RL1_CHAN_READ_FIFO 12 
IOCTL_PMC_BIS3_RL1_CHAN_SET_TX_CONFIG 12 
IOCTL_PMC_BIS3_RL1_CHAN_GET_TX_STATE 13 
IOCTL_PMC_BIS3_RL1_CHAN_SET_RX_CONFIG 13 
IOCTL_PMC_BIS3_RL1_CHAN_GET_RX_STATE 14 
IOCTL_PMC_BIS3_RL1_CHAN_START_TX 14 
IOCTL_PMC_BIS3_RL1_CHAN_STOP_TX 14 
IOCTL_PMC_BIS3_RL1_CHAN_START_RX 15 
IOCTL_PMC_BIS3_RL1_CHAN_STOP_RX 15 
IOCTL_PMC_BIS3_RL1_CHAN_GET_RX_BYTE_COUNT 15 
IOCTL_PMC_BIS3_RL1_REGISTER_EVENT 16 
IOCTL_PMC_BIS3_RL1_ENABLE_INTERRUPT 16 
IOCTL_PMC_BIS3_RL1_DISABLE_INTERRUPT 16 
IOCTL_PMC_BIS3_RL1_FORCE_INTERRUPT 16 
IOCTL_PMC_BIS3_RL1_GET_ISR_STATUS 17 

Write 18 

Read 18 

WARRANTY AND REPAIR 19 

Service Policy 19 
Support 19 

For Service Contact: 19 



               Em b ed d ed  So lu t io n s                 Page   4  

Introduction 

The Pmc-BiSerial-III-RL1 base and chan drivers were developed with the 
Windows Driver Foundation version 1.9 (WDF) from Microsoft, specifically the 
Kernel-Mode Driver Framework (KMDF). It was developed using 64 bit Windows 
operating system with an Intel Core i7 Processor. 
 
The PMC-BiSerial-III board has a Spartan3-1500 Xilinx FPGA to implement the 
PCI interface, FIFOs and protocol control and status for eight serial channels.  
Each channel has two 1k x 32-bit data FIFOs for data transmission and 
reception. 
 
The UserApp is a stand-alone code set with a simple and powerful menu plus a 
series of tests that can be run on the installed hardware.  Each of the tests 
execute calls to the driver, pass parameters and structures, and get results back.  
With the sequence of calls demonstrated, the functions of the hardware are 
utilized for loop-back testing.  The software is used for manufacturing test at 
Dynamic Engineering. The test software can be ported to your application to 
provide a running start. The register tests are simple and will quickly demonstrate 
the end-to-end operation of your application making calls to the driver and 
interacting with the hardware. 
 
The menu allows the user to add tests, to run sequences of tests, to run until a 
failure occurs and stop or to continue, to program a set number of loops to 
execute and more.  The user can add tests to the provided test suite to try out 
application ideas before committing to your system configuration.  In many cases 
the test configuration will allow faster debugging in a more controlled 
environment before integrating with the rest of the system. 
 
When the PMC-BiSerial-III-RL1 is recognized by the PCI bus configuration utility 
it will start the PmcBis3Rl1 drivers to allow communication with the device.  IO 
Control calls (IOCTLs) are used to configure the board and read status.  Read 
and Write calls are used to move blocks of data in and out of the device. 
 
 
Note 
This documentation will provide information about all calls made to the drivers, 
and how the drivers interact with the device for each of these calls.  For more 
detailed information on the hardware implementation, refer to the PMC-BiSerial-
III-Rl1 user manual (also referred to as the hardware manual). 



               Em b ed d ed  So lu t io n s                  Page   5  

 

Driver Installation 

There are several files provided in each driver package.  These files include 
PmcBis3Rl1BasePublic.h, PmcBis3Rl1Base.inf, pmcbis3rl1base.cat, 
PmcBis3Rl1Base.sys, PmcBis3Rl1ChanPublic.h, PmcBis3Rl1Chan.inf, 
pmcbis3rl1chan.cat, PmcBis3Rl1Chan.sys, and WdfCoInstaller01009.dll. 
 
PmcBis3Rl1BasePublic.h are PmcBis3Rl1ChanPublic.h the C header file that 
define the Application Program Interface (API) for the PmcBis3Rl1 drivers.  
These files are required at compile time by any application that wishes to 
interface with the drivers, but is not needed for driver installation. 
 

W indows 7  Installation 

Copy PmcBis3Rl1Base.inf, pmcbis3rl1base.cat, PmcBis3Rl1Base.sys, 
PmcBis3Rl1Chan.inf, pmcbis3rl1chan.cat, PmcBis3Rl1Chan.sys, and 
WdfCoInstaller01009.dll (Win7 version) to a CD or USB memory device as 
preferred. 
 
With the PMC BIS3 RL1 hardware installed, power-on the PCI host computer. 

 Open the Device Manager from the control panel. 

 Under Other devices there should be an Other PCI Bridge Device*. 

 Right-click on the Other PCI Bridge Device and select Update Driver 
Software. 

 Insert the disk or memory device prepared above in the desired drive. 

 Select Browse my computer for driver software. 

 Select Let me pick from a list of device drivers on my computer. 

 Select Next. 

 Select Have Disk and enter the path to the device prepared above. 

 Select Next. 

 Select Close to close the update window. 

 Follow the same steps to install the channel drivers.  
 
The system should now display the PmcBis3Rl1 PCI adapter in the Device 
Manager. 
 
* If the Other PCI Bridge Device is not displayed, click on the Scan for 
hardware changes icon on the tool-bar.  



               Em b ed d ed  So lu t io n s                  Page   6  

Driver Startup 
Once the driver has been installed it will start automatically when the system 
recognizes the hardware. 
 
A handle can be opened to a specific board by using the CreateFile() function 
call and passing in the device name obtained from the system. 
 
The interface to the device is identified using globally unique identifiers (GUID), 
which are defined in PmcBis3Rl1Public.h.  See main.c in the 
PmcBis3Rl1UserApp project for an example of how to acquire a handle to the 
device. 
 
The main file provided is designed to work with our test menu and includes user 
interaction steps to allow the user to select which board is being tested in a 
multiple board environment.  The integrator can hardcode for single board 
systems or use an automatic loop to operate in multiple board systems without 
using user interaction.  For multiple user systems it is suggested that the board 
number is associated with a switch setting so the calls can be associated with a 
particular board from a physical point of view. 
 

IO Controls 

The drivers use IO Control calls (IOCTLs) to configure the device.  IOCTLs refer 
to a single Device Object, which controls a single board or I/O channel.  IOCTLs 
are called using the Win32 function DeviceIoControl(), and passing in the handle 
to the device opened with CreateFile() (see above).  IOCTLs generally have 
input parameters, output parameters, or both.  Often a custom structure is used. 
 
BOOL DeviceIoControl( 

  HANDLE       hDevice,         // Handle opened with CreateFile() 

  DWORD        dwIoControlCode, // Control code defined in API header 

file 

  LPVOID       lpInBuffer,      // Pointer to input parameter 

  DWORD        nInBufferSize,   // Size of input parameter 

  LPVOID       lpOutBuffer,     // Pointer to output parameter 

  DWORD        nOutBufferSize,  // Size of output parameter 

  LPDWORD      lpBytesReturned, // Pointer to return length parameter 

  LPOVERLAPPED lpOverlapped,    // Optional pointer to overlapped 

structure 

);                              //   used for asynchronous I/O 

 



               Em b ed d ed  So lu t io n s                  Page   7  

 

The IOCTLs defined for the PmcBis3Rl1Base driver are described below: 
 

IOCTL_PMC_BIS3_RL1_BASE_GET_INFO 

Function: Returns the current driver version and instance number. 
Input: none 
Output: PMC_BIS3_RL1_BASE_DRIVER_DEVICE_INFO structure 
Notes: Switch value is the configuration of the onboard dipswitch that has been 
selected by the User (see the board silk screen for bit position and polarity).  The 
PLL ID is the device address of the PLL.  This value, which is set at the factory, 
is usually 0x69 but may also be 0x6A. See the definition of 
PMC_BIS3_RL1_DRIVER_DEVICE_INFO below. Refer to the PrintInfo function 
found in the PrintInfo.c file in the UserApp for an example of use.  
 
typedef struct PMC_BIS3_RL1_BASE_DRIVER_DEVICE_INFO 

{ 

   UCHAR    DriverVersion; 

   UCHAR    XilinxVersion; 

   UCHAR    PllDeviceId; 

   UCHAR    SwitchValue; 

   ULONG    InstanceNumber; 

   BOOLEAN  PllALocked; 

   BOOLEAN  PllBLocked; 

} PMC_BIS3_RL1_BASE_DRIVER_DEVICE_INFO, *PPMC_BIS3_RL1_BASE_DRIVER_DEVICE_INFO; 

 

IOCTL_PMC_BIS3_RL1_BASE_LOAD_PLL_DATA 

Function: Loads the internal registers of the PLL. 
Input: PMC_BIS3_RL1_PLL_DATA structure 
Output: None 
Notes: The PMC_BIS3_RL1_PLL_DATA structure has only one field: Data – an 
array of 40 bytes containing the data to write.  See the definition of 
PMC_BIS3_RL1_PLL_DATA below. Refer to the PLL_if_test function found in 
the UserApp for an example of use. 
 

#define PLL_MESSAGE1_SIZE     16 

#define PLL_MESSAGE2_SIZE     24 

#define PLL_MESSAGE_SIZE     (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE) 

 

typedef struct PMC_BIS3_RL1_BASE_PLL_DATA 

{ 

   UCHAR    Data[PLL_MESSAGE_SIZE]; 

} PMC_BIS3_RL1_BASE_PLL_DATA, *PPMC_BIS3_RL1_BASE_PLL_DATA;



               Em b ed d ed  So lu t io n s                  Page   8  

 

IOCTL_PMC_BIS3_RL1_BASE_READ_PLL_DATA 

Function: Returns the contents of the PLL’s internal registers 
Input: None 
Output: PMC_BIS3_RL1_PLL_DATA structure 
Notes: The register data is output in the PMC_BIS3_RL1_PLL_DATA structure 
in an array of 40 bytes. Refer to the PLL_if_test function found in the UserApp 
for an example of use. 
 
The IOCTLs defined for the PmcBis3Rl1Chan driver are described below: 
 

IOCTL_PMC_BIS3_RL1_CHAN_GET_INFO 

Function: Returns the current driver version and instance number. 
Input: none 
Output: RL1_CHAN_DRIVER_DEVICE_INFO structure 
Notes:. See the definition of RL1_CHAN_DRIVER_DEVICE_INFO below. Refer 
to the PrintInfo function found in the PrintInfo.c file in the UserApp for an 
example of use.  
 
typedef struct _RL1_CHAN_DRIVER_DEVICE_INFO 

{ 

   UCHAR    DriverVersion; 

   ULONG    InstanceNumber; 

} RL1_CHAN_DRIVER_DEVICE_INFO, *PRL1_CHAN_DRIVER_DEVICE_INFO; 

 

IOCTL_PMC_BIS3_RL1_CHAN_SET_CONFIG 

Function: Specifies fields in the channel configuration register 
Input: RL1_CHAN_CONFIG structure 
Output: none 
Notes: This call controls channel configuration items that are not transmit or 
receive specific.  The AutoDirSwitch field enables the automatic switching from 
transmit to receive and vice versa when the current active direction signals that it 
is done.  When IoClockASel is true, PLL clock A is selected as the clock source, 
when it is false PLL clock B is selected.  When ClockDiv is equal to one, the 
undivided clock source will be used for the 16x reference clock.  Otherwise the 
clock source can be divided by any even number from two to thirty-two.  See the 
definition of RL1_CHAN_CONFIG below. Register definition can be found in the 
‘RL1_CHAN_0-7_CONTROL’ section under Register Definitions in the Hardware 
manual. Refer to the ioloop_tst function found in the UserApp for an example of 
use.  



               Em b ed d ed  So lu t io n s                  Page   9  

 

typedef struct _RL1_CHAN_CONFIG 

{ 

   BOOLEAN  FifoTestEn; 

   BOOLEAN  DmaInPreemptEn; 

   BOOLEAN  DmaOutPreemptEn;C 

   BOOLEAN  FullDuplexEn; 

   BOOLEAN  AutoDirSwitch; 

   BOOLEAN  IoClockASel; 

   BOOLEAN  ClockDivSel; 

   UCHAR    ClockDiv; 

} RL1_CHAN_CONFIG, *PRL1_CHAN_CONFIG; 

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_STATE 

Function: Returns the channel configuration 
Input: none 
Output: RL1_CHAN_STATE structure 
Notes: The states of the interrupt enables are returned for informational 
purposes only.  The values of these fields are controlled by other driver calls.  
The MIntEn field is the master interrupt enable for all user interrupts controlled 
by the EnableInterrupt and DisableInterrupt calls, whereas the WrDmaEn and 
RdDmaEn fields are automatically controlled by the driver in response to 
WriteFile and ReadFile calls.  Register definition can be found in the 
‘RL1_CHAN_0-7_CONTROL’ section under Register Definitions in the Hardware 
manual. See the definition of RL1_CHAN_STATE below. 
 

typedef struct _RL1_CHAN_STATE 

{ 

   BOOLEAN  FifoTestEn; 

   BOOLEAN  DmaInPreemptEn; 

   BOOLEAN  DmaOutPreemptEn; 

   BOOLEAN  FullDuplexEn; 

   BOOLEAN  AutoDirSwitch; 

   BOOLEAN  IoClockASel; 

   BOOLEAN  ClockDivSel; 

   UCHAR    ClockDiv;      // divide by 1,2,4,6...32 

   BOOLEAN  MIntEn; 

   BOOLEAN  WrDmaEn; 

   BOOLEAN  RdDmaEn; 

   BOOLEAN  FifoResetTX; 

   BOOLEAN  FifoResetRX; 

} RL1_CHAN_STATE, *PRL1_CHAN_STATE; 



               Em b ed d ed  So lu t io n s                  Page   10  

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_STATUS 

Function: Returns the interrupt status bit mask and clears the latched bits. 
Input: None 
Output: Interrupt status channel mask (unsigned long integer) 
Notes: Only the bits in STATUS_MASK will be returned.  The bits in 
STATUS_LATCH_MASK will be cleared by this call only if they are set when the 
register was read.  This prevents the possibility of missing an interrupt condition 
that occurs after the register has been read but before the latched register bits 
are cleared.Bit definitions can be found in the ‘RL1_CHAN_0-7_STATUS’ 
section under Register Definitions in the Hardware manual. Refer to the 
ioloop_tst function found in the UserApp for an example of use 
 

IOCTL_PMC_BIS3_RL1_CHAN_SET_FIFO_LEVELS 

Function: Sets receive almost full and transmit almost empty FIFO levels. 
Input: RL1_CHAN_FIFO_LEVELS structure 
Output: None 
Notes: These FIFO levels are used to determine TX almost empty and RX 
almost full status when the FIFO data counts reach the specified levels.  They 
are also used to signal priority for the DMA request/grant arbiter, if this has been 
enabled for the referenced channel.  Register definition can be found in the 
‘RL1_CHAN_0-7_TX_AMT_LVL’ and ‘RL1_CHAN_0-7_AFL_LVL’ sections 
under Register Definitions in the Hardware manual. Refer to the ioloop_tst 
function found in the UserApp for an example of use 
 

typedef struct _RL1_CHAN_FIFO_LEVELS 

{ 

   USHORT   AlmostFull; 

   USHORT   AlmostEmpty; 

} RL1_CHAN_FIFO_LEVELS, *PRL1_CHAN_FIFO_LEVELS; 

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_FIFO_LEVELS 

Function: Returns receive almost full and transmit almost empty FIFO levels. 
Input: Channel (unsigned character) 
Output: RL1_CHAN_FIFO_LEVELS structure 
Notes: Register definition can be found in the ‘RL1_CHAN_0-7_TX_AMT_LVL’ 
and ‘RL1_CHAN_0-7_AFL_LVL’ sections under Register Definitions in the 
Hardware manual. 



               Em b ed d ed  So lu t io n s                  Page   11  

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_FIFO_COUNT 

Function: Returns the number of words stored in the TX and RX FIFOs. 
Input: None 
Output: RL1_CHAN_FIFO_COUNTS 
Notes: Returns the number of words in the referenced channels I/O data 
circuitry.  For the transmitter this is a maximum of one more than the FIFO size 
and for the receiver the data-count can be as much as four words more than the 
FIFO size.  The excess is due to data pipe-line latches in the I/O data-path.  . 
See the definition of RL1_CHAN_FIFO_COUNTS below. Register definition can 
be found in the ‘RL1_CHAN_0-7_TX_FIFO_COUNT’ and ‘RL1_CHAN_0-
7_TX_FIFO_COUNT’ sections under Register Definitions in the Hardware 
manual. Refer to the ioloop_tst function found in the UserApp for an example of 
use 
 

typedef struct _PMC_BIS6_S311_FIFO_COUNT 

{ 

   UCHAR    channel; 

   ULONG    TxFifoCount; 

   ULONG    RxFifoCount; 

} PMC_BIS6_S311_FIFO_COUNT, *PPMC_BIS6_S311_FIFO_COUNT; 

 

IOCTL_PMC_BIS3_RL1_CHAN_RESET_FIFOS 

Function: Resets TX and/or RX FIFOs 
Input: RL1_CHAN_FIFO_SEL 
Output: None 
Notes: Resets either one or both transmit and receive FIFOs depending on 
input. This will clear all data. Refer to the ioloop_tst function found in the 
UserApp for an example of use 
 
typedef enum _RL1_CHAN_FIFO_SEL  

{ 

   RL1_TX,  

   RL1_RX,  

   RL1_BOTH 

} RL1_CHAN_FIFO_SEL, *PRL1_CHAN_FIFO_SEL; 



               Em b ed d ed  So lu t io n s                  Page   12  

 

IOCTL_PMC_BIS3_RL1_CHAN_WRITE_FIFO 

Function: Writes a single 32-bit word to the channel’s transmit FIFO. 
Input: FIFO data word (unsigned long integer) 
Output: None 
Notes: Normally the write command is used to load data into the device.  This 
call can be used for small amounts of data, but is inefficient for larger sized 
transfers. 
 

typedef struct _PMC_BIS6_S311_DATA 

{ 

   UCHAR    channel; 

   ULONG    FifoData; 

} PMC_BIS6_S311_DATA, *PPMC_BIS6_S311_DATA; 
 

IOCTL_PMC_BIS3_RL1_CHAN_READ_FIFO 

Function: Reads a single 32-bit word from the channel’s receive FIFO. 
Input: None 
Output: FIFO data word (unsigned long integer) 
Notes: Normally the read command is used to retrieve data from the device.  
This call can be used for small amounts of data, but is inefficient for larger sized 
transfers. 
 

IOCTL_PMC_BIS3_RL1_CHAN_SET_TX_CONFIG 

Function: Specifies various parameters that control the behavior of the transmitter. 
Input: RL1_CHAN_TX_CONFIG structure 
Output: None 
Notes: See below for the definition of RL1_CHAN_TX_CONFIG. Register 
definition can be found in the ‘RL1_CHAN_0-7_TX_CONTROL’ section under 
Register Definitions in the Hardware manual. Refer to the ioloop_tst function 
found in the UserApp for an example of use 
 

typedef struct _RL1_CHAN_TX_CONFIG 

{ 

   BOOLEAN           TxIntEnable; 

   BOOLEAN           TxFifoIntEn; 

   BOOLEAN           ClearEnable; 

   BOOLEAN           StopTwoSel; 

   RL1_CHAN_PAR_SEL  Parity; 

} RL1_CHAN_TX_CONFIG, *PRL1_CHAN_TX_CONFIG; 



               Em b ed d ed  So lu t io n s                  Page   13  

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_TX_STATE 

Function: Returns the parameters set in the previous call as well as the state of the 
transmitter enable bit. 
Input: None 
Output: RL1_CHAN_TX_STATE structure 
Notes: See below for the definition of RL1_CHAN_TX_ STATE. If the 
ClearEnable field has been set to true, the Enabled field can be monitored to 
indicate when the current message has completed.  Register definition can be 
found in the ‘RL1_CHAN_0-7_TX_CONTROL’ section under Register Definitions 
in the Hardware manual. 
 

typedef struct _RL1_CHAN_TX_STATE 

{ 

   BOOLEAN           Enabled; 

   BOOLEAN           TxIntEnable; 

   BOOLEAN           TxFifoIntEn; 

   BOOLEAN           ClearEnable; 

   BOOLEAN           StopTwoSel; 

   RL1_CHAN_PAR_SEL  Parity; 

} RL1_CHAN_TX_STATE, *PRL1_CHAN_TX_STATE; 

 

IOCTL_PMC_BIS3_RL1_CHAN_SET_RX_CONFIG 

Input: RL1_CHAN_RX_CONFIG structure 
Output: None 
Notes: TermEnable activates the 100Ω shunt termination on the receive data 
lines.  When the interface is operating in half-duplex mode, the termination will 
only be active when the transmitter is not active. See below for the definition of 
RL1_CHAN_RX_CONFIG. Register definition can be found in the 
‘RL1_CHAN_0-7_RX_CONTROL’ section under Register Definitions in the 
Hardware manual. Refer to the ioloop_tst function found in the UserApp for an 
example of use 
 

typedef struct _RL1_CHAN_RX_CONFIG 

{ 

   BOOLEAN           RxIntEnable; 

   BOOLEAN           RxFifoIntEn; 

   BOOLEAN           RxOvflIntEn; 

   BOOLEAN           ClearEnable; 

   BOOLEAN           TermEnable; 

   BOOLEAN           StopTwoSel; 

   RL1_CHAN_PAR_SEL  Parity; 

} RL1_CHAN_RX_CONFIG, *PRL1_CHAN_RX_CONFIG; 



               Em b ed d ed  So lu t io n s                  Page   14  

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_RX_STATE 

Function: Returns the parameters set in the previous call as well as the state of the 
receiver enable bit. 
Input: None 
Output: RL1_CHAN_RX_STATE structure 
Notes: If the ClearEnable field has been set to true, the Enabled field can be 
monitored to indicate when the current message has completed.  See below for 
the definition of RL1_CHAN_RX_STATE. Register definition can be found in the 
‘RL1_CHAN_0-7_RX_CONTROL’ section under Register Definitions in the 
Hardware manual. 
 

typedef struct _RL1_CHAN_RX_STATE 

{ 

   BOOLEAN           Enabled; 

   BOOLEAN           RxIntEnable; 

   BOOLEAN           RxFifoIntEn; 

   BOOLEAN           RxOvflIntEn; 

   BOOLEAN           ClearEnable; 

   BOOLEAN           TermEnable; 

   BOOLEAN           StopTwoSel; 

   RL1_CHAN_PAR_SEL  Parity; 

} RL1_CHAN_RX_STATE, *PRL1_CHAN_RX_STATE; 

 

IOCTL_PMC_BIS3_RL1_CHAN_START_TX 

Function: Starts a data transmission provided valid data is available to send. 
Input: Number of bytes to send (unsigned short integer) 
Output: None 
Notes: If the input field is NULL or zero, the transmission will continue until all 
FIFO data has been sent.  If this field is non-zero, only the specified number of 
bytes will be sent. Register definition can be found in the ‘RL1_CHAN_0-
7_TX_START_LATCH section under Register Definitions in the Hardware 
manual. 
 
 

IOCTL_PMC_BIS3_RL1_CHAN_STOP_TX 

Function: Abort or cancel a data transmission. 
Input: None 
Output: None 
Notes: This call will cancel a transmit request that has not started or stop a 
transmission in progress. Register definition can be found in the ‘RL1_CHAN_0-
7_TX_START_LATCH section under Register Definitions in the Hardware 
manual. 



               Em b ed d ed  So lu t io n s                  Page   15  

 

IOCTL_PMC_BIS3_RL1_CHAN_START_RX 

Function: Enable the receiver to look for data and store it in the receive FIFO. 
Input: None 
Output: None 
Notes: . Register definition can be found in the ‘RL1_CHAN_0-
7_RX_START_LATCH section under Register Definitions in the Hardware 
manual. 
 
 

IOCTL_PMC_BIS3_RL1_CHAN_STOP_RX 

Function: Abort or cancel a data reception. 
Input: None 
Output: None 
Notes: This call will cancel a receive request that has not started or stop a 
reception in progress. Register definition can be found in the ‘RL1_CHAN_0-
7_RX_START_LATCH section under Register Definitions in the Hardware 
manual. 
 

IOCTL_PMC_BIS3_RL1_CHAN_GET_RX_BYTE_COUNT 

Function: Returns the number of bytes received in the last message. 
Input: None 
Output: Received byte count (unsigned short integer) 
Notes: Each channel contains a 16-bit counter that increments each time a data 
byte is received.  When the received data input is high for at least 8 bit-periods 
after the end of a data-byte, the receiver sets the STAT_RX_INT status bit, 
transfers this count to the byte-count register and clears the counter for the next 
message.  The byte-count register value is returned by this call.  The value will 
remain valid until the end of a subsequent message. Register definition can be 
found in the ‘RL1_CHAN_0-7_BYTE_COUNT’ section under Register Definitions 
in the Hardware manual. 



               Em b ed d ed  So lu t io n s                  Page   16  

 

IOCTL_PMC_BIS3_RL1_CHAN_REGISTER_EVENT 

Function: Registers an event to be signaled when an interrupt occurs. 
Input: Handle to the Event object 
Output: None 
Notes: The caller creates an event with CreateEvent().  The returned handle is 
the input to this IOCTL.  The driver then signals the event when a user interrupt 
is serviced.  The user interrupt service routine waits on this event, allowing it to 
respond to the interrupt. Refer to the interrupt function found in the UserApp for 
an example of use 
 

IOCTL_PMC_BIS3_RL1_CHAN_ENABLE_INTERRUPT 

Function: Enables the master interrupt. 
Input: None 
Output: None 
Notes: This command must be run to allow the board to respond to local 
interrupts.  The master interrupt enable is disabled in the driver interrupt service 
routine.  Therefore this command must be run after an interrupt occurs to be 
ready for the next interrupt. Refer to the interrupt function found in the UserApp 
for an example of use 
 

IOCTL_PMC_BIS3_RL1_CHAN_DISABLE_INTERRUPT 

Function: Disables the master interrupt. 
Input: None 
Output: None 
Notes: This call is used when local interrupt processing is no longer desired. 
Refer to the interrupt function found in the UserApp for an example of use 
 

IOCTL_PMC_BIS3_RL1_CHAN_FORCE_INTERRUPT 

Function: Causes a system interrupt to occur. 
Input: None 
Output: None 
Notes: Causes an interrupt to be asserted on the PCI bus as long as the master 
interrupt is enabled.  This IOCTL is used for development, to test interrupt 
processing. Refer to the interrupt function found in the UserApp for an example 
of use 



               Em b ed d ed  So lu t io n s                  Page   17  

 

IOCTL_PMC_BIS3_RL1_CHAN_GET_ISR_STATUS 

Function: Returns the interrupt status read in the ISR from the last user 
interrupt. 
Input: None 
Output: Interrupt status value (unsigned long integer) 
Notes: Returns the interrupt status that was read in the interrupt service routine 
of the last interrupt caused by one of the enabled channel interrupts.  The 
latched status bits are cleared in the driver interrupt service routine. Refer to the 
interrupt function found in the UserApp for an example of use. 



               Em b ed d ed  So lu t io n s                  Page   18  

 

Write 

PMC-BiSerial-III RL1 DMA data is written to the device using the write command.  
Writes are executed using the Win32 function WriteFile() and passing in the 
handle to the target device, a pointer to a pre-allocated buffer containing the data 
to be written, an unsigned long integer that represents the number of bytes to be 
transferred, a pointer to an unsigned long integer to contain the number of bytes 
actually written, and a pointer to an optional Overlapped structure for performing 
asynchronous I/O. 

Read 

PMC-BiSerial-III RL1 DMA data is read from the device using the read 
command.  Reads are executed using the Win32 function ReadFile() and 
passing in the handle to the target device, a pointer to a pre-allocated buffer that 
will contain the data read, an unsigned long integer that represents the number 
of bytes to be transferred, a pointer to an unsigned long integer to contain the 
number of bytes actually read, and a pointer to an optional Overlapped structure 
for performing asynchronous I/O. 



               Em b ed d ed  So lu t io n s                  Page   19  

 

Warranty and Repair 

Please refer to the warranty page on our website for the current warranty offered 
and options. 
http://www.dyneng.com/warranty.html 

Service Policy 

Before returning a product for repair, verify as well as possible that the driver is 
at fault.  The driver has gone through extensive testing, and in most cases it will 
be “cockpit error” rather than an error with the driver.  When you are sure or at 
least willing to pay to have someone help then call or e-mail and arrange to work 
with an engineer.  We will work with you to determine the cause of the issue. 

Support 

The software described in this manual is provided at no cost to clients who have 
purchased the corresponding hardware.   Minimal support is included along with 
the documentation.  For help with integration into your project please contact 
sales@dyneng.com for a support contract.  Several options are available.  With 
a contract in place Dynamic Engineers can help with system debugging, special 
software development, or whatever you need to get going.  
 

For Service Contact: 

Customer Service Department 
Dynamic Engineering 
150 DuBois Street, Suite C 
Santa Cruz, CA 95060 
831-457-8891 
831-457-4793 Fax 
support@dyneng.com 
 
All information provided is Copyright Dynamic Engineering 

http://www.dyneng.com/warranty.html
mailto:sales@dyneng.com

