
DYNAMIC ENGINEERING
150 DuBois, Suite B/C
Santa Cruz, CA 95060

(831) 457-8891
https://www.dyneng.com

sales@dyneng.com
Est. 1988

PMC-OctalUART-232
Software Manual

8 Port UART Interface

Windows 10 WDF Driver Documentation
Developed with Windows Driver Foundation Ver1.9

Manual Revision 1p0

Corresponding Hardware: 10-2018-0201
PMC-OctalUART-232

 Embedded Solutions Page 2 of 20

PMC-OctalUART-232

8-Channel UART Interface

Dynamic Engineering

150 DuBois, Suite B/C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©1988-2022 by Dynamic Engineering.

Other trademarks and registered trademarks are owned by
their respective manufacturers.
Manual Revision A: Revised 4/29/22

 Embedded Solutions Page 3

Introduction .. 5

Driver Installation ... 7
Windows 10 Installation ... 7
Driver Startup ... 8
IO Controls ... 9

IOCTL_PMC_OctalUART_GET_INFO .. 9
IOCTL_PMC_OctalUART_SET_UART_CONFIG .. 10
IOCTL_PMC_OctalUART_GET_UART_CONFIG ... 10
IOCTL_PMC_OctalUART_SET_DATA_CONFIG .. 11
IOCTL_PMC_OctalUART_GET_DATA_CONFIG ... 11
IOCTL_PMC_OctalUART_SET_UART_INTEN ... 11
IOCTL_PMC_OctalUART_GET_UART_INTEN .. 12
IOCTL_PMC_OctalUART_SET_UART_MODEM_CONTROL ... 12
IOCTL_PMC_OctalUART_GET_UART_MODEM_CONTROL .. 12
IOCTL_PMC_OctalUART_SET_UART_FLOW_CONTROL_PARAMS .. 13
IOCTL_PMC_OctalUART_SET_UART_FLOW_CONTROL_MODE ... 14
IOCTL_PMC_OctalUART_GET_UART_FLOW_CONTROL_MODE .. 15
IOCTL_PMC_OctalUART_WRITE_UART_DATA_BYTE .. 15
IOCTL_PMC_OctalUART_READ_UART_DATA_BYTE .. 15
IOCTL_PMC_OctalUART_RESET_UART ... 15
IOCTL_PMC_OctalUART_GET_FIFO_STATUS ... 16
IOCTL_PMC_OctalUART_CONFIGURE_FIFOS .. 16
IOCTL_PMC_OctalUART_GET_UART_STATUS ... 17
IOCTL_PMC_OctalUART_GET_STATUS ... 17
IOCTL_PMC_OctalUART_REGISTER_EVENT .. 17
IOCTL_PMC_OctalUART_SET_MASTER_INT_CONFIG ... 18
IOCTL_PMC_OctalUART_CLR_MASTER_INT_CONFIG .. 18
IOCTL_PMC_OctalUART_FORCE_INTERRUPT ... 18
IOCTL_PMC_OctalUART_CLR_FORCE_INTERRUPT .. 18
IOCTL_PMC_OctalUART_GET_ISR_STATUS ... 19
IOCTL_PMC_OctalUART_WRITEFILE ... 19
IOCTL_PMC_OctalUART_READFILE ... 19

Warranty and Repair .. 20

Table of Contents

 Embedded Solutions Page 4

Service Policy ... 20
Support ... 20

For Service Contact: .. 20

 Embedded Solutions Page 5

Introduction
The PmcOctalUART driver is a Windows device driver for the PMC-OctalUART-
232 module from Dynamic Engineering. This driver was developed with the
Windows Driver Foundation version 1.9 (WDF) from Microsoft, specifically the
Kernel-Mode Driver Framework (KMDF).

The PmcOctalUART software package has two parts. The driver for Windows®
10 OS, and the User Application “UserAp” executable.

The driver is delivered electronically. The files supplied are installed into the
client system to allow access to the hardware. The UserAp code is delivered in
source form [C] and is for the purpose of providing a reference to using the
driver.

UserAp is a stand-alone code set with a simple, and powerful menu plus a series
of “tests” that can be run on the installed hardware. Each of the tests execute
calls to the driver, pass parameters and structures, and get results back. With
the sequence of calls demonstrated, the functions of the hardware are utilized for
loop-back testing. The software is used for manufacturing test at Dynamic
Engineering.
The test software can be ported to your application to provide a running start. It
is recommended to port the tests to your application to get started. The tests are
simple and will quickly demonstrate the end-to-end operation of your application
making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system. The test suite is
designed to accommodate up to 5 boards. The number of boards can be
expanded. See Main.c to increase the number of handles.

The hardware manual defines the pinout, the bitmaps and detailed configurations
for each feature of the design. The driver handles all aspects of interacting with
the hardware. For added explanations about what some of the driver functions
do, please refer to the hardware manual for the version in use.

 Embedded Solutions Page 6

We strive to make a useable product. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with
us.

When the PmcOctalUART device is recognized by the system the host will start
the PmcOctalUART driver which will create a device object for the board. If more
than one is found additional copies of the driver are loaded. From within the
PmcOctalUART driver the user can access the switch and slot information to
determine the specific device being accessed when more than one is installed.

The reference software application has a loop to check for devices. The number
of devices found, the locations, and device count are printed out at the top of the
menu.

IO Control calls (IOCTLs) are used to configure the board and read status. Read
and Write calls are used to move data in and out of the device.
Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the PMC-
OctalUART-232 user manual (also referred to as the hardware manual).
.

 Embedded Solutions Page 7

Driver Installation
There are several files provided in each driver package. These files include
Public.h, PmcOctalUart.inf, pmcoctaluart.cat, PmcOctalUart.sys.

Public.h is the C header file that defines the Application Program Interface (API)
for the PmcOctalUart driver. This file is required at compile time by any
application that wishes to interface with the drivers, but is not needed for driver
installation. In addition, a second .h file is provided with handy definitions for the
UARTs. PmcOctalUART_Defs.h. UserAp includes this file and it is
incorporated into the g_all.h global include within that package.

Windows 10 Installation
Copy PmcOctalUart.inf, pmcoctaluart.cat, PmcOctalUart.sys, and copy to your
preferred medium.

With the PMC-OctalUART-232 hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver
Software.
• Insert the disk or memory device prepared above in the desired drive.
• Select Browse my computer for driver software.
• Select Let me pick from a list of device drivers on my computer.
• Select Next.
• Select Have Disk and enter the path to the device prepared above.
• Select Next.
• Select Close to close the update window.
The system should now display the PmcOctalUart PCI adapter in the Device
Manager.

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 8

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in Public.h. See main.c in the PmcOctalUartUserAp project for
an example of how to acquire a handle to the device.

The main.c file provided with the user test software can be used as an example
to show how to obtain a handle to an PmcOctalUART device. Examples of how
to use the following IOCTLs to perform UART set-up, transmission, reception,
ReadMultiple and WriteMultiple are contained in the UserAp code set. Please
note: some tests require the use of a loop-back fixture. See HW manual for
connections. We use HDEterm68 for this purpose.
https://www.dyneng.com/HDEterm68.html

 Embedded Solutions Page 9

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win32 function DeviceIoControl(), and passing in the handle
to the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header
file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
structure
); // used for asynchronous I/O

The IOCTLs defined for the PMC-OctalUART-232 driver are described
below:
IOCTL_PMC_OctalUART_GET_INFO
Function: Returns the device driver version, design version, design type, user
switch value, device instance number and PLL device ID.
Input: None
Output: PDRIVER_UART_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that
has been selected by the user (see the board silk screen for bit position and
polarity). Instance number is the zero-based device number. See the definition
of DRIVER_UART_DEVICE_INFO below. Bit definitions can be found in the
‘BaseRev’ section under Register Definitions in the Hardware manual.

typedef struct _DRIVER_UART_DEVICE_INFO {
 UCHAR DriverVersion;
 UCHAR SwitchValue;
 UCHAR DeviceRevMaj;
 UCHAR DeviceRevMin;
 UCHAR InstanceNumber;
} DRIVER_UART_DEVICE_INFO, *PDRIVER_UART_DEVICE_INFO;

 Embedded Solutions Page 10

IOCTL_PMC_OctalUART_SET_UART_CONFIG
Function: Set UART reference clock settings.
Input: UART_BASE_CONFIG
Output: None
Notes: See the definition of UART_BASE_CONFIG below. Definition can be
found in the ‘UartCntl’ section under Register Definitions in the Hardware
manual.

typedef struct _UART_BASE_CONFIG {
 BOOLEAN Osc_sel;
} UART_BASE_CONFIG, *PUART_BASE_CONFIG;

IOCTL_PMC_OctalUART_GET_UART_CONFIG
Function: Read the UART reference clock settings.
Input: None
Output: UART_BASE_CONFIG
Notes: Returns the values set in the previous call. See the definition of
UART_BASE_CONFIG above.
	

 Embedded Solutions Page 11

IOCTL_PMC_OctalUART_SET_DATA_CONFIG
Function: Set UART channel baud rate, data word size, parity, and TX break
configuration.
Input: UART_DATA_CONFIG
Output: None
Notes: See the definition of UART_DATA_CONFIG below. See the ‘Line Control
Register’ Section of the EXAR XR16C854/854D manual for detailed definitions.

typedef struct _UART_DATA_CONFIG {
 UCHAR Channel;
 USHORT BaudDiv;
 DATA_WORD DataWord;
 PARITY Parity;
 BOOLEAN TxBreak;
} UART_DATA_CONFIG, *PUART_DATA_CONFIG;

IOCTL_PMC_OctalUART_GET_DATA_CONFIG
Function: Read the UART channel baud rate, data word size, parity, and TX break
configuration.
Input: Channel (UCHAR)
Output: UART_DATA_CONFIG
Notes: Returns the values set in the previous call. See the definition of
UART_DATA_CONFIG above.

IOCTL_PMC_OctalUART_SET_UART_INTEN
Function: Set UART channel interrupt enable configuration.
Input: UART_INT_CONFIG
Output: None
Notes: See the definition of UART_INT_CONFIG below. See the ‘Interrupt
Enable Register’ Section of the EXAR XR16C854/854D manual for detailed
definitions.

typedef struct _UART_INT_CONFIG {
 UCHAR Channel;
 BOOLEAN RxInten;
 BOOLEAN TxInten;
 BOOLEAN LineInten;
 BOOLEAN ModemInten;
 BOOLEAN XoffInten;
 BOOLEAN RtsInten;
 BOOLEAN CtsInten;
} UART_INT_CONFIG, *PUART_INT_CONFIG;
	

 Embedded Solutions Page 12

IOCTL_PMC_OctalUART_GET_UART_INTEN
Function: Read the UART channel interrupt enable configuration.
Input: Channel (UCHAR)
Output: UART_INT_CONFIG
Notes: Returns the values set in the previous call. See the definition of
UART_INT_CONFIG above.

IOCTL_PMC_OctalUART_SET_UART_MODEM_CONTROL
Function: Set UART channel modem/loopback control configuration.
Input: UART_MODEM_CONFIG
Output: None
Notes: See the definition of UART_MODEM_CONFIG below. See the ‘Modem
Control Register’ Section of the EXAR XR16C854/854D manual for detailed
definitions.

typedef struct _UART_MODEM_CONFIG {
 UCHAR Channel;
 BOOLEAN IntrnlLpbk;
 BOOLEAN Dtr;
 BOOLEAN Rts;
 BOOLEAN Op1;
 BOOLEAN XonAny;
 BOOLEAN IrModeEn;
 BOOLEAN BrgPrescaler;
} UART_MODEM_CONFIG, *PUART_MODEM_CONFIG;

IOCTL_PMC_OctalUART_GET_UART_MODEM_CONTROL
Function: Read the UART channel modem/loopback control configuration
Input: Channel (UCHAR)
Output: UART_MODEM_CONFIG
Notes: Returns the values set in the previous call. See the definition of
UART_MODEM_CONFIG above.
	

 Embedded Solutions Page 13

IOCTL_PMC_OctalUART_SET_UART_FLOW_CONTROL_PARAMS
Function: Set UART channel flow control parameters.
Input: UART_FLOW_PARAMS
Output: None
Notes: See the definition of UART_FLOW_PARAMS below. See the ‘Xon
Character 1’, ‘Xon Character 2’, ‘Xoff Character 1’, ‘Xoff Character 2’, and the
‘FIFO Trigger Level Reg’ Sections of the EXAR XR16C854/854D manual for
detailed definitions.

typedef struct _TRIG_PARAMS {
 UCHAR RxTrig;
 UCHAR TxTrig;
 UCHAR RxHyst;
} TRIG_PARAMS, *PTRIG_PARAMS;

typedef struct _X_CHARS {
 UCHAR Xon1;
 UCHAR Xon2;
 UCHAR Xoff1;
 UCHAR Xoff2;
} X_CHARS, *PX_CHARS;

typedef struct _UART_FLOW_PARAMS {
 UCHAR Channel;
 TRIG_PARAMS TrigLevels;
 X_CHARS XChars;
} UART_FLOW_PARAMS, *PUART_FLOW_PARAMS;

	

 Embedded Solutions Page 14

IOCTL_PMC_OctalUART_SET_UART_FLOW_CONTROL_MODE
Function: Set UART channel flow control configuration.
Input: UART_FLOW_CONFIG
Output: None
Notes: See the definition of UART_FLOW_CONFIG below. See the ‘Enhanced
Function Register’ Section of the EXAR XR16C854/854D manual for detailed
definitions.

typedef enum _CNTRL_TYPE {
 NONE,
 HW,
 SW
} CNTRL_TYPE, *PCNTRL_TYPE;

typedef enum _HW_FLOW_SEL {
 RTS,
 CTS,
 BOTH
} HW_FLOW_SEL, *PHW_FLOW_SEL;

typedef enum _SW_FLOW_SEL {
 NO,
 X_1,
 X_2,
 X_1_2
} SW_FLOW_SEL, *PSW_FLOW_SEL;

typedef struct _UART_FLOW_CONFIG {
 UCHAR Channel;
 CNTRL_TYPE FlowMode;
 HW_FLOW_SEL HwMode;
 SW_FLOW_SEL RxMode;
 SW_FLOW_SEL TxMode;
 BOOLEAN SpclCharEn;
} UART_FLOW_CONFIG, *PUART_FLOW_CONFIG;
	

 Embedded Solutions Page 15

IOCTL_PMC_OctalUART_GET_UART_FLOW_CONTROL_MODE
Function: Read the UART channel modem/loopback control configuration
Input: Channel (UCHAR)
Output: UART_FLOW_CONFIG
Notes: Returns the values set in the previous call. See the definition of
UART_FLOW_CONFIG above.

IOCTL_PMC_OctalUART_WRITE_UART_DATA_BYTE
Function: Write a data byte to the UART channel.
Input: UART_WRITE_BYTE
Output: None
Notes: See the definition of UART_WRITE_BYTE below. See the ‘Transmit
Holding Register’ Section of the EXAR XR16C854/854D manual for detailed
definitions.

typedef struct _UART_WRITE_BYTE {
 UCHAR Channel;
 UCHAR Byte;
} UART_WRITE_BYTE, *PUART_WRITE_BYTE;

IOCTL_PMC_OctalUART_READ_UART_DATA_BYTE
Function: Read a data byte to the UART channel.
Input: Channel (UCHAR)
Output: Data (UCHAR)
Notes: Returns the values set in the previous call. See the ‘Receive Holding Register’
Section of the EXAR XR16C854/854D manual for detailed definitions.

IOCTL_PMC_OctalUART_RESET_UART
Function: Reset all the UARTs.
Input: None
Output: None
Notes: Resetting UARTs puts them into the mode where FLVL register replaces the
SPAD register as described in the introduction above. All other registers, not associated
with the FLVL, are reset as the EXAR XR16C854/854D manual describes. See the
‘TX/RX FIFO Level Counter Register’ Section of the EXAR XR16C854/854D manual for
detailed definitions.
	

 Embedded Solutions Page 16

IOCTL_PMC_OctalUART_GET_FIFO_STATUS
Function: Returns the status from the FIFO ready ports values for all UARTs channel.
Input: None
Output: FIFO_STATUS
Notes: See the definition of FIFO_STATUS above. Definition can be found in the
‘FR1_4’ and ‘FR5_8’ section under Register Definitions in the Hardware manual.

IOCTL_PMC_OctalUART_CONFIGURE_FIFOS
Function: Write a data byte to the UART channel.
Input: UART_FIFO_CONFIG
Output: None
Notes: See the definition of UART_FIFO_CONFIG below. See the ‘FIFO Control
Register’ Section of the EXAR XR16C854/854D manual for detailed definitions.

typedef enum _FIFO_CONTROL {
 FF_DIS,
 FF_EN,
 FF_EN_RST_RX,
 FF_EN_RST_TX,
 FF_EN_RST_BOTH
} FIFO_CONTROL, *PFIFO_CONTROL;

typedef struct _UART_FIFO_CONFIG {
 UCHAR Channel;
 FIFO_CONTROL FifoConfig[UART_NUM_CHANNELS];
} UART_FIFO_CONFIG, *PUART_FIFO_CONFIG;
	

 Embedded Solutions Page 17

IOCTL_PMC_OctalUART_GET_UART_STATUS
Function: Returns various status values for a UART channel.
Input: None
Output: UART_STATUS
Notes: See the definition of UART_STATUS above. See the ‘Interrupt Status Register’,
‘Line Status Register’, ‘Modem Status Register’, and the ‘FIFO Level Register’ Sections
of the EXAR XR16C854/854D manual for detailed definitions.

typedef struct _UART_STATUS {
 UCHAR Channel;
 UCHAR Isr;
 UCHAR Lsr;
 UCHAR Msr;
 UCHAR ID; // ID of the UART
 UCHAR Rev; // Revision for the UART
 UCHAR RxFFCount;
 UCHAR TxFFCount;
} UART_STATUS, *PUART_STATUS;

IOCTL_PMC_OctalUART_GET_STATUS
Function: Returns the status bits in the INT_STATUS register.
Input: None
Output: (ULONG)
Notes: See the definition of UART_BASE_CONFIG above.

IOCTL_PMC_OctalUART_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced. The user interrupt service routine waits on this event, allowing it to
respond to the interrupt.

 Embedded Solutions Page 18

IOCTL_PMC_OctalUART_SET_MASTER_INT_CONFIG
Function: Enables the master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user
interrupts. The master interrupt enable is disabled in the driver interrupt service
routine when a user interrupt is serviced. Therefore this command must be run
after each user interrupt occurs to re-enable it.

IOCTL_PMC_OctalUART_CLR_MASTER_INT_CONFIG
Function: Disables the master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_PMC_OctalUART_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the master
interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_PMC_OctalUART_CLR_FORCE_INTERRUPT
Function: Clears request bit
Input: None
Output: None
Notes:

 Embedded Solutions Page 19

IOCTL_PMC_OctalUART_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: Interrupt status value (UART_INT_STAT)
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled channel interrupts.
InterruptStatus shows in which channel the interrupt occurred and IntChanStat
shows the state of the ISR register for each channel. See ‘Interrupt Status
Register’ Section of the EXAR XR16C854/854D manual for detailed definitions.

typedef struct _UART_INT_STAT {
 ULONG InterruptStatus;
 UCHAR IntChanStat[UART_NUM_CHANNELS];
} UART_INT_STAT, *PUART_INT_STAT;

IOCTL_PMC_OctalUART_WRITEFILE
Function: Write multiple data to specified port
Input: TRANS_MULT structure [quantity, array, port]
Output: none
Notes: Make sure there is room for the desired transfer size [max = 0x80] – the
driver will wait for room.

IOCTL_PMC_OctalUART_READFILE
Function: Read data from the Interrupt Enable register.
Input: TRANS_MULT
Output: TRANS_MULT
Notes: TRANS_MULT returns with the number of bytes actually read. If the
count in the UART is smaller than the count requested, the amount available is
read and the count returned.

	

 Embedded Solutions Page 20

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

