
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

IP-OptoISO-16

16 Channel Optically Isolated Drivers

Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Manual Revision A
Corresponding Hardware: Revision C

10-2003-0104
FLASH revision A1

 Embedded Solutions Page 2 of 16

IP-OptoISO-16

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
831-457-8891
FAX: 831-457-4793

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and
the recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor
its contents revealed in any manner or to any person except to
meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves
the right to make improvements or changes in the product
described in this document at any time and without notice.
Furthermore, Dynamic Engineering assumes no liability arising
out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without
the express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with IP Module
carriers and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2015-2016 by Dynamic Engineering.
Trademarks and registered trademarks are owned by their
respective manufactures.

 Embedded Solutions Page 3 of 16

Table of Contents

INTRODUCTION 5

Driver Installation 7

Windows 7 Installation 7

Driver Startup 8

IO Controls 8
IOCTL_IP_OPTO_ISO16_GET_INFO 9
IOCTL_IP_OPTO_ISO16_SET_IP_CONTROL 9
IOCTL_IP_OPTO_ISO16_GET_IP_STATE 10
IOCTL_IP_OPTO_ISO16_GET_IP_SIGNATURE 10
IOCTL_IP_OPTO_ISO16_ENABLE_FET 11
IOCTL_IP_OPTO_ISO16_DISABLE_FET 11
IOCTL_IP_OPTO_ISO16_CTA_INT_EN 11
IOCTL_IP_OPTO_ISO16_CTA_INT_DIS 11
IOCTL_IP_OPTO_ISO16_CTB_INT_EN 11
IOCTL_IP_OPTO_ISO16_CTB_INT_DIS 12
IOCTL_IP_OPTO_ISO16_SET_FET_CONTROL 12
IOCTL_IP_OPTO_ISO16_GET_FET_CONTROL 12
IOCTL_IP_OPTO_ISO16_SET_WAVE_CONTROL 12
IOCTL_IP_OPTO_ISO16_GET_WAVE_CONTROL 12
IOCTL_IP_OPTO_ISO16_SET_TIMER_CONT 13
IOCTL_IP_OPTO_ISO16_GET_TIMER_CONT 13
IOCTL_IP_OPTO_ISO16_SET_PRELOAD 13
IOCTL_IP_OPTO_ISO16_GET_PRELOAD 13
IOCTL_IP_OPTO_ISO16_SET_TIMER_MASK 13
IOCTL_IP_OPTO_ISO16_GET_TIMER_MASK 14
IOCTL_IP_OPTO_ISO16_GET_READBACK_CNT 14
IOCTL_IP_OPTO_ISO16_REGISTER_EVENT 14
IOCTL_IP_OPTO_ISO16_ENABLE_INTERRUPT 14
IOCTL_IP_OPTO_ISO16_DISABLE_INTERRUPT 14
IOCTL_IP_OPTO_ISO16_FORCE_INTERRUPT 15
IOCTL_IP_OPTO_ISO16_SET_VECTOR 15
IOCTL_IP_OPTO_ISO16_GET_VECTOR 15

WARRANTY AND REPAIR 16

Service Policy 16
Support 16

For Service Contact: 16

 Embedded Solutions Page 4 of 16

 Embedded Solutions Page 5 of 16

Introduction
The IP-OptoIso-16 driver is a Windows device driver for the IP-Test Industry-pack (IP)
module from Dynamic Engineering. This driver was developed with the Windows
Driver Foundation version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode
Driver Framework (KMDF).

The IP-OptoIso-16 driver package has two parts. The driver is installed into the
Windows® OS, and the User Application “UserApp” executable.

The driver is delivered as installed or executable items to be used directly or indirectly
by the user. The UserApp code is delivered in source form [C] and is for the purpose of
providing a reference to using the driver.

UserApp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing.
The software is used for manufacturing test at Dynamic Engineering.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of
the system. The test suite is designed to accommodate up to 5 boards. The number of
boards can be expanded. See Main.c to increase the number of handles.

The hardware manual defines the pinout, the bitmaps and detailed configurations for
each feature of the design. The driver handles all aspects of interacting with the
hardware. For added explanations about what some of the driver functions do, please
refer to the hardware manual.

We strive to make a useable product, and while we can guarantee operation we can’t
foresee all concepts for client implementation. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with us,
[engineering@dyneng.com] and we will consider and in many cases add them.

IP-OptoIso-16 has a Spartan2 Xilinx FPGA to implement the IP Interface, protocol
control and status for the IO. IP-OptoIso-16 is designed to provide optically isolated
FET switches suitable for high and low side high voltage switching applications.
Additional features include two counter timers. The counters can be used to create
periodic interrupts.

 Embedded Solutions Page 6 of 16

When the IP-OptoIso-16 board is recognized by the IP Carrier Driver, the carrier driver
will start the IP-OptoIso-16 driver which will create a device object for the board. If
more than one is found additional copies of the driver are loaded. The carrier driver
will load the info storage register on the IP-OptoIso-16 with the carrier switch setting
and the slot number of the IP-OptoIso-16 device. From within the IP-OptoIso-16 driver
the user can access the switch and slot information to determine the specific device
being accessed when more than one are installed.

The reference software application has a loop to check for devices. The number of
devices found, the locations, and device count are printed out at the top of the menu.

IO Control calls (IOCTLs) are used to configure the board and read status. Read and
Write calls are used to move data in and out of the device.
Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the IP-OptoIso-16 user manual
(also referred to as the hardware manual).

 Embedded Solutions Page 7 of 16

Driver Installation
There are several files provided in each driver package. These files include
IpOptoIso16.sys, IpOptoIso16Public.h, IpPublic.h, WdfCoInstaller01009.dll,
IpDevices.inf and IpDevices.cat.

IpOptoIso16Public.h and IpPublic.h are C header files that define the Application
Program Interface (API) to the driver. These files are required at compile time by any
application that wishes to interface with the driver, but are not needed for driver
installation.

Note: Other IP module drivers are included in the package since they were all signed
together and must be present to validate the digital signature. These other IP module
driver files must be present when the IpOptoIso16 driver is installed, to verify the digital
signature in IpDevices.cat, otherwise they can be ignored.

Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

Windows 7 Installation
Copy IpDevices.inf, IpDevices.cat, WdfCoInstaller01009.dll, IpOptoIso16.sys and the
other IP module drivers to a removable memory device or other accessible location as
preferred.

With the IP hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each IP module installed on the IP

carrier. The label for a module installed in the first slot of the first PCIe3IP carrier
would read PcieCar0 IP Slot A*.

• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The IpOptoIso16 device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

* If the [Carrier] IP Slot [x] devices are not displayed, click on the Scan for hardware

changes icon on the Device Manager tool-bar.

 Embedded Solutions Page 8 of 16

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a speci fic board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in IpOptoIso16Public.h.

The main.c file provided with the user test software can be used as an example to show
how to obtain a handle to an IpOptoIso16 device.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single module. IOCTLs are called using the
Win32 function DeviceIoControl() (see below), and passing in the handle to the device
opened with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 9 of 16

The IOCTLs defined for the IpOptoIso16 driver are described below:

IOCTL_IP_OPTO_ISO16_GET_INFO
Function: Returns the driver and firmware revisions, module instance number and location
and other information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only stored driver parameters. NewIpCntl
indicates that the module’s carrier has expanded slot control capabilities. See the definition of
DRIVER_IP_DEVICE_INFO below.

 // Driver version and instance/slot information
typedef struct _DRIVER_IP_DEVICE_INFO {
 USHORT DriverRev;
 USHORT FirmwareRev;
 USHORT FirmwareRevMin;
 USHORT InstanceNum;
 UCHAR CarrierSwitch;
 UCHAR CarrierSlotNum;
 BOOLEAN NewIpCntl;
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

IOCTL_IP_OPTO_ISO16_SET_IP_CONTROL
Function: Sets various control parameters for the IP slot the module is installed in.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Controls the IP clock speed, interrupt enables and data manipulation options for
the IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.
For more information refer to the IP carrier hardware manual.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

 Embedded Solutions Page 10 of 16

IOCTL_IP_OPTO_ISO16_GET_IP_STATE
Function: Returns control/status information for the IP slot the module is installed in.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control parameters set in the previous call as well as status
information for the IP slot that the board occupies. See the definition of
IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;
} IP_SLOT_STATE, *PIP_SLOT_STATE;

IOCTL_IP_OPTO_ISO16_GET_IP_SIGNATURE
Function: Returns IP module information
Input: None
Output: IP_OPTO_ISO16_SIGNATURE
Notes: See the definition of IP_OPTO_ISO16_SIGNATURE below.

typedef struct _IP_OPTO_ISO16_SIGNATURE {
 UCHAR IpManuf;
 UCHAR IpModel;
 UCHAR IpRevision;
 UCHAR IpCustomer;
 USHORT IpVersion;
 UCHAR Slot;
} IP_OPTO_ISO16_SIGNATURE, *PIP_OPTO_ISO16_SIGNATURE;

 Embedded Solutions Page 11 of 16

IOCTL_IP_OPTO_ISO16_ENABLE_FET
Function: Sets the enable for FET operation
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_OPTO_ISO16_DISABLE_FET
Function: Clears the enable for FET operation
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_OPTO_ISO16_CTA_INT_EN
Function: Sets the enable that allows counter timer A to cause an interrupt.
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_OPTO_ISO16_CTA_INT_DIS
Function: Clears the enable that allows counter timer A to cause an interrupt.
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_OPTO_ISO16_CTB_INT_EN
Function: Sets the enable that allows counter timer B to cause an interrupt.
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

 Embedded Solutions Page 12 of 16

IOCTL_IP_OPTO_ISO16_CTB_INT_DIS
Function: Clears the enable that allows counter timer A to cause an interrupt.
Input: None
Output: None
Notes: Leaves all other bit values in the base register unchanged. Detailed definition
can be found under ‘ip_optoiso_base’ section under Register Definitions in the
Hardware manual.

IOCTL_IP_OPTO_ISO16_SET_FET_CONTROL
Function: Enables or disables each of the 16 individual FET
Input: USHORT
Output: None
Notes: Set to 1 to enable the FET. 0 to disable. Detailed definition can be found under
‘ip_optoiso_fet’ section under Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_GET_FET_CONTROL
Function: Returns the status of the FET control set with the above call.
Input: None
Output: USHORT
Notes: 1 is enabled and 0 is disabled. Detailed definition can be found under
‘ip_optoiso_fet’ section under Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_SET_WAVE_CONTROL
Function: Sets OUT signal control to bit mapped or waveform
Input: USHORT
Output: None
Notes: Writing a 1 to a bit will switch to CTA waveform control. The default 0 is FET
bitmapped control. Detailed definition can be found under ‘ip_optoiso_wav’ section
under Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_GET_WAVE_CONTROL
Function: Returns the status of the control set with the above call.
Input: None
Output: USHORT
Notes: Detailed definition can be found under ‘ip_optoiso_wav’ section under Register
Definitions in the Hardware manual.

 Embedded Solutions Page 13 of 16

IOCTL_IP_OPTO_ISO16_SET_TIMER_CONT
Function: Set the timer control register
Input: IP_OPTO_ISO16_TC structure
Output: None
Notes: See the definition of IP_OPTO_ISO16_TC below. Detailed bit definitions can be
found under ‘ip_optoiso_tc’ section under Register Definitions in the Hardware manual.

typedef struct _IP_OPTO_ISO16_TC {
 BOOLEAN LoadTimerA;
 BOOLEAN ClearTimerB;
 BOOLEAN HoldTimerB;
} IP_OPTO_ISO16_TC, *PIP_OPTO_ISO16_TC;

IOCTL_IP_OPTO_ISO16_GET_TIMER_CONT
Function: Get the timer control
Input: None
Output: IP_OPTO_ISO16_TC structure
Notes: Detailed bit definitions can be found under ‘ip_optoiso_tc’ section under
Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_SET_PRELOAD
Function: Set value to the preload register
Input: ULONG
Output: None
Notes: Detailed definition can be found under ‘Pre-Load Register’ section under
Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_GET_PRELOAD
Function: Get value set to the preload register
Input: None
Output: ULONG
Notes: Detailed definition can be found under ‘Pre-Load Register’ section under
Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_SET_TIMER_MASK
Function: Set value to the timer mask register
Input: ULONG
Output: None
Notes: Detailed definition can be found under ‘Mask Register’ section under Register
Definitions in the Hardware manual.

 Embedded Solutions Page 14 of 16

IOCTL_IP_OPTO_ISO16_GET_TIMER_MASK
Function: Get value set to timer mask register
Input: None
Output: ULONG
Notes: Detailed definition can be found under ‘Mask Register’ section under Register
Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_GET_READBACK_CNT
Function: Get value of Counter/Timer B
Input: None
Output: ULONG
Notes: Detailed definition can be found under ‘Read-Back Register’ section under
Register Definitions in the Hardware manual.

IOCTL_IP_OPTO_ISO16_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a system
pointer to the event and signals the event when an interrupt is serviced. The user
interrupt service routine waits on this event, allowing it to respond to the interrupt. In
order to un-register the event, set the event handle to NULL while making this call.

IOCTL_IP_OPTO_ISO16_ENABLE_INTERRUPT
Function: Sets the master interrupt enable.
Input: None
Output: None
Notes: Sets the master interrupt enable, leaving all other bit values in the base register
unchanged. This IOCTL is used in the user interrupt processing function to re-enable
the interrupts after they were disabled in the driver ISR. This allows the driver to set
the master interrupt enable without knowing the state of the other base configuration
bits.

IOCTL_IP_OPTO_ISO16_DISABLE_INTERRUPT
Function: Clears the master interrupt enable.
Input: None
Output: None
Notes: Clears the master interrupt enable, leaving all other bit values in the base
register unchanged. This IOCTL is used when interrupt processing is no longer

 Embedded Solutions Page 15 of 16

desired.

IOCTL_IP_OPTO_ISO16_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: IP_429II_INT_SEL structure
Output: None
Notes: Causes an interrupt to be asserted on the IP bus. This IOCTL is used for
development, to test interrupt processing.

IOCTL_IP_OPTO_ISO16_SET_VECTOR
Function: Writes an 8 bit value to the interrupt vector register.
Input: UCHAR
Output: None
Notes: Required when used in non auto-vectored systems.

IOCTL_IP_OPTO_ISO16_GET_VECTOR
Function: Returns a stored vector value.
Input: None
Output: UCHAR
Notes:

 Embedded Solutions Page 16 of 16

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use and service and in
its original, unmodified condition, for a period of one year from the time of purchase. If the product is
found to be defective within the terms of this warranty, Dynamic Engineering's sole responsibility shall be
to repair, or at Dynamic Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that set forth herein.
Dynamic Engineering disclaims and excludes all other product warranties and product liability, expressed
or implied, including but not limited to any implied warranties of merchantability or fitness for a particular
purpose or use, liability for negligence in manufacture or shipment of product, liability for injury to
persons or property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life support devices
or systems without the express written approval of the president of Dynamic Engineering.

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault. The driver has
gone through extensive testing and in most cases it will be “cockpit error” rather than an error with the
driver. When you are sure or at least willing to pay to have someone help then call the Customer
Service Department and arrange to speak with an engineer. We will work with you to determine the
cause of the issue. If the issue is one of a defective driver we will correct the problem and provide an
updated module(s) to you [no cost]. If the issue is of the customer’s making [anything that is not the
driver] the engineering time will be invoiced to the customer. Pre-approval may be required in some
cases depending on the customer’s invoicing policy.

Support
The software described in this manual is provided at no cost to cl ients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

