
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

(831) 457-8891 Fax (831) 457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

PMC BiSerial III ORB2
Base

&

Channels

Driver Documentation

Win32 Driver Model

Manual Revision B
Corresponding Hardware: Revision A

10-2005-0204
Corresponding Firmware:

ORB2: Design 9, Revision 3

 Embedded Solutions Page 2 of 33

ORB2Base & ORB2Chan
WDM Device Drivers for the
PMC-BiSerial-III-ORB2
8 port Multi-function IO

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2009 by Dynamic Engineering.
Other trademarks and registered trademarks are
owned by their respective manufactures.
Manual Revision B Revised March 12, 2009

 Embedded Solutions Page 3 of 33

Table of Contents
Introduction...5
Note..6
Driver Installation..7
Windows 2000 Installation ..8
Windows XP Installation ...8
Driver Startup ...9

IOCTL_ORB2_BASE_GET_INFO...10
IOCTL_ORB2_BASE_LOAD_PLL_DATA ...10
IOCTL_ORB2_BASE_READ_PLL_DATA ...11
IOCTL_ORB2_BASE_SET_BASEREG...11
IOCTL_ORB2_BASE_GET_BASEREG ..11
IOCTL_ORB2_BASE_GET_STATUS ...11
IOCTL_ORB2_BASE_SET_GPIOTERM...12
IOCTL_ORB2_BASE_GET_GPIOTERM ..12
IOCTL_ORB2_BASE_SET_GPIODIR...12
IOCTL_ORB2_BASE_GET_GPIODIR ..12
IOCTL_ORB2_BASE_SET_GPIOREG ...12
IOCTL_ORB2_BASE_GET_GPIOREG...12
IOCTL_ORB2_BASE_GET_GPIOIN...13
IOCTL_ORB2_CHAN_GET_INFO ..14
IOCTL_ORB2_CHAN_GET_STATUS...14
IOCTL_ORB2_CHAN_CLR_STATUS...15
IOCTL_ORB2_CHAN_SET_FIFO_LEVELS..15
IOCTL_ORB2_CHAN_GET_FIFO_LEVELS ...15
IOCTL_ORB2_CHAN_GET_FIFO_COUNTS..15
IOCTL_ORB2_CHAN_RESET_FIFOS..16
IOCTL_ORB2_CHAN_REGISTER_EVENT ..16
IOCTL_ORB2_CHAN_ENABLE_INTERRUPT..16
IOCTL_ORB2_CHAN_DISABLE_INTERRUPT...16
IOCTL_ORB2_CHAN_FORCE_INTERRUPT ...16
IOCTL_ORB2_CHAN_GET_ISR_STATUS...17
IOCTL_ORB2_CHAN_SWW_TX_FIFO ..17
IOCTL_ORB2_CHAN_SWR_RX_FIFO...17
IOCTL_ORB2_CHAN_SET_CONT ...17
IOCTL_ORB2_CHAN_GET_CONT...17
IOCTL_ORB2_CHAN_SET_TX_REG...18
IOCTL_ORB2_CHAN_GET_TX_REG...18

 Embedded Solutions Page 4 of 33

IOCTL_ORB2_CHAN_SET_TX_COUNT ..18
IOCTL_ORB2_CHAN_GET_TX_COUNT..18

Ternary Control...19
IOCTL_ORB2_CHAN_SET_TX_COM12 ..19
IOCTL_ORB2_CHAN_GET_TX_COM12 ..19
IOCTL_ORB2_CHAN_SET_RX_COM12 ..19
IOCTL_ORB2_CHAN_GET_RX_COM12..19
IOCTL_ORB2_CHAN_SET_SYNC_COM12 ...19
IOCTL_ORB2_CHAN_GET_SYNC_COM12...19

LS Control...20
IOCTL_ORB2_CHAN_SET_TX_COM34 ..20
IOCTL_ORB2_CHAN_GET_TX_COM34 ..20
IOCTL_ORB2_CHAN_SET_RX_COM34 ..20
IOCTL_ORB2_CHAN_GET_RX_COM34..20

TLM Control..21
IOCTL_ORB2_CHAN_SET_MAS_COM56 ...21
IOCTL_ORB2_CHAN_GET_MAS_COM56...21
IOCTL_ORB2_CHAN_SET_TAR_COM56..21
IOCTL_ORB2_CHAN_GET_TAR_COM56 ...21

TLM Register Files ...21
IOCTL_ORB2_CHAN_SET_MAS_RF_COM56...21
IOCTL_ORB2_CHAN_GET_MAS_RF_COM56 ..21
IOCTL_ORB2_CHAN_SET_TAR_RF_COM56 ...21
IOCTL_ORB2_CHAN_GET_TAR_RF_COM56...22

HS Control ..22
IOCTL_ORB2_CHAN_SET_TX_COM78 ..22
IOCTL_ORB2_CHAN_GET_TX_COM78 ..22
IOCTL_ORB2_CHAN_SET_RX_COM78 ..22
IOCTL_ORB2_CHAN_GET_RX_COM78..22

Length Error Counts ...23
IOCTL_ORB2_CHAN_SET_RX_LEN_ERR_CNT...23
IOCTL_ORB2_CHAN_GET_RX_LEN_ERR_CNT ..23

Write ...24
Read...24

Warranty and Repair..25
Service Policy ...26

Out of Warranty Repairs ..26
For Service Contact: ...26

Appendix..27
Reference copy of structures for evaluation ...27

Base: ...27
Channel: ..28

 Embedded Solutions Page 5 of 33

Introduction

The ORB2Base and ORB2Chan drivers are Win32 driver model (WDM) device drivers
for the PMC-BiSerial-III-ORB2 from Dynamic Engineering.

The ORB2 driver package has three parts. The driver is installed into the Windows®
OS, the test executable and the User Application “Userap” executable.

The driver and test are delivered as installed or executable items to be used directly or
indirectly by the user. The Userap code is delivered in source form [C] and is for the
purpose of providing a reference to using the driver.

The “test” executable allows the user to use the driver in script form from a DOS
window. Each driver call can be accessed, parameters set and returned. Normally not
needed or used by the integrator, but a very handy tool in certain circumstances. The
test executable has a “help” menu to explain the calls, parameters and returned
information.

UserAp is a stand-alone code set with a simple, and powerful menu plus a series of
“tests” that can be run on the installed hardware. Each of the tests execute calls to the
driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing. The
software is used for manufacturing test at Dynamic Engineering. For example most
Dynamic Engineering PCI based designs support DMA. DMA is demonstrated with the
memory based loop-back tests. The tests can be ported and modified to fit your
requirements.

The test software can be ported to your application to provide a running start. It is
recommended to port the switch and status tests to your application to get started. The
tests are simple and will quickly demonstrate the end-to-end operation of your
application making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of the
system.

The hardware has features common to the board level and features that are set apart in
“channels”. The channels have the same offsets within the channel, and the same
status and control bit locations allowing for symmetrical software in the calling routines.
The driver supports the channels with a variable passed in to identify which channel is
being accessed. The hardware manual defines the pinout for each channel and the

 Embedded Solutions Page 6 of 33

bitmaps and detailed configurations for each channel. The driver handles all aspects of
interacting with the channels and base features.

We strive to make a useable product, and while we can guarantee operation we can’t
foresee all concepts for client implementation. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with us,
[engineering@dyneng.com] and we will consider and in many cases add them.

The PMC BiSerial III board has a Spartan3-4000 Xilinx FPGA to implement the PCI
interface, FIFOs and protocol control and status for the IO. The IO are grouped into
COM ports. COM1&2 are defined to be Ternary, COM3&4 are LowSpeed, COM5&6
are Telemetry, and COM7&8 are HighSpeed ports. Channel A of the PLL is set to 140
MHz and then divided down to control COM1-6. COM7&8 use PLL channel B. Please
refer to the HW manual for a much more complete description of the HW features.

When the PMC-BiSerial-III-ORB2 board is recognized by the PCI bus configuration
utility it will start the PmcBis3ORB2Base driver which will create a device object for
each board, initialize the hardware, create a child devices for the channel and request
loading of the PmcBis3ORB2Chan driver. The PmcBis3ORB2Chan driver will create a
device object for the I/O channel and perform initialization on the channel. IO Control
calls (IOCTLs) are used to configure the board and read status. Read and Write calls
are used to move blocks of data in and out of the device.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PMC-BiSerial-III-ORB2 user
manual (also referred to as the hardware manual).

 Embedded Solutions Page 7 of 33

Driver Installation

There are several files provided in each driver package. These files include driver:
ORB2Base.sys, PmcORB2.inf, DDORB2Base.h, ORB2BaseGUID.h, ORB2Chan.sys,
DDORB2Chan.h, ORB2ChanGUID.h. Driver Test: ORB2Test.exe, Userap: User
Application source files.

ORB2BaseGUID.h and ORB2ChanGUID.h are C header files that define the device
interface identifiers for the drivers. DDORB2Base.h and DDORB2Chan.h files are C
header files that define the Application Program Interface (API) to the drivers. These
files are required at compile time by any application that wishes to interface with the
drivers, but they are not needed for driver installation. The files are included with the
Userap fileset.

ORB2Test.exe is a sample Win32 console applications that makes calls into the
ORB2Base/ORB2Chan drivers to test each driver call without actually writing any
application code. They are not required during driver installation either. Please note
that the test driver software is incomplete at this time. Please refer to the User
Application software package as a reference for using the driver.

To run ORB2Test, open a command prompt console window and type ORB2Test -d0 -
? to display a list of commands (the PmcBis3ORB2Test.exe file must be in the directory
that the window is referencing). The commands are all of the form ORB2Test -dn -im
where n and m are the device number and PmcBis3ORB2Base driver ioctl number
respectively or ORB2Test -cn -im where n and m are the channel number (0-1) and
PmcParTtlORB2Chan driver ioctl number respectively.

This test application is intended to test the proper functioning of each driver call, not for
normal operation. Many integration efforts will never need the debugger capability that
the test menu represents. The test capability will allow the designer to access the card
without any other software in the way to make sure that the system can “see” the card
and to do basic card manipulations.

 Embedded Solutions Page 8 of 33

Windows 2000 Installation

Copy PmcORB2.inf, ORB2Base.sys and ORB2Chan.sys to a floppy disk, or CD if
preferred. In some cases the files can be accessed over a network or from local HDD.
Substitute the network address for the floppy instructions to proceed with an over the
network installation.

With the hardware installed, power-on the PCI host computer and wait for the Found
New Hardware Wizard dialogue window to appear.
_ Select Next.
_ Select Search for a suitable driver for my device.
_ Select Next.
_ Insert the disk prepared above in the desired drive.
_ Select the appropriate drive e.g. Floppy disk drives.
_ Select Next.
_ The wizard should find the PmcORB2.inf file.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the channels and reopen the New Hardware Wizard.
Repeat this for each channel as necessary.

Windows XP Installation

Copy PmcORB2.inf, ORB2Base.sys and ORB2Chan.sys to a floppy disk, or CD if
preferred. In some cases the files can be accessed over a network or from local HDD.
Substitute the network address for the floppy instructions to proceed with an over the
network installation.

With the hardware installed, power-on the PCI host computer and wait for the Found
New Hardware Wizard dialogue window to appear.
_ Insert the disk prepared above in the desired drive.
_ Select No when asked to connect to Windows Update.
_ Select Next.
_ Select Install the software automatically.
_ Select Next.
_ Select Finish to close the Found New Hardware Wizard.
The system should now see the channels and reopen the New Hardware Wizard.
Proceed as above for each channel as necessary.

 Embedded Solutions Page 9 of 33

Driver Startup

Once the drivers have been installed they will start automatically when the system
recognizes the hardware.

Handles can be opened to a specific board by using the CreateFile() function call and
passing in the device names obtained from the system.

The interfaces to the devices are identified using globally unique identifiers (GUIDs),
which are defined in ORB2BaseGUID.h and ORB2ChanGUID.h.

The User Application software contains a file called “main.c”. Main has the initialization
needed to get the handles to the base and channel assets of the installed PMC-
BiSerial-III-ORB2 device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a multiple
board environment. The integrator can hardcode for single board systems or use an
automatic loop to operate in multiple board systems without using user interaction. For
multiple user systems it is suggested that the board number is associated with a switch
setting so the calls can be associated with a particular board from a physical point of
view.

 Embedded Solutions Page 10 of 33

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with
CreateFile()
 DWORD dwIoControlCode, // Control code defined in API
header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length
parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to
overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the ORB2Base driver are described below:

IOCTL_ORB2_BASE_GET_INFO
 Function: Return the Instance Number, Switch value, PLL device ID, Xilinx rev and
Current Driver Version
 Input: None
Output: ORB2_BASE_DRIVER_DEVICE_INFO : Structure
Notes: Switch value is the configuration of the on-board dip-switch that has been set by
the User (see the board silk screen for bit position and polarity). The PLL ID is the
device address of the PLL device. This value, which is set at the factory, is usually
0x69 but may also be 0x6A. See DDORB2Base.h for the definition of
SPWR_BASE_DRIVER_DEVICE_INFO.

IOCTL_ORB2_BASE_LOAD_PLL_DATA
Function: Loads the internal registers of the PLL.
Input: ORB2_BASE_PLL_DATA structure
Output: None
Notes:

 Embedded Solutions Page 11 of 33

IOCTL_ORB2_BASE_READ_PLL_DATA
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: ORB2_BASE_PLL_DATA structure
Notes: The register data is output in the ORB2_BASE_PLL_DATA structure in an array
of 40 bytes.

IOCTL_ORB2_BASE_SET_BASEREG
Function: Write to Base Control Register - general access to base control register of
card, use with bit definitions
Input: ULONG
Output: none
Notes: Use for general purpose – bit mapped access to the base control register.

IOCTL_ORB2_BASE_GET_BASEREG
Function: Read from Base Control Register - general access from base control register
of card, use with bit definitions
Input: none
Output: ULONG
Notes: Use for general purpose – bit mapped access to the base control register.

IOCTL_ORB2_BASE_GET_STATUS
Function: Read from Status Register
Input: none
Output: ULONG
Notes: Use for general purpose – bit mapped access from the register. See
DDORB2Base.h for bit map information. See the HW manual for exact definitions of
bits.

 Embedded Solutions Page 12 of 33

There is an 8 bit parallel port for General Purpose IO [GPIO]. The following calls are
used to set direction, termination, and data values for each bit.

IOCTL_ORB2_BASE_SET_GPIOTERM
Function: Write to GPIO Termination Register
Input: ULONG 7-0 correspond to GPIO7-0
Output: none
Notes: 0 = not terminated, 1 = terminated for each bit.

IOCTL_ORB2_BASE_GET_GPIOTERM
Function: Read from Direction Register
Input: none
Output: ULONG 7-0 valid
Notes: 0 = not terminated, 1 = terminated for each bit.

IOCTL_ORB2_BASE_SET_GPIODIR
Function: Write to GPIO Direction Register
Input: ULONG 7-0 correspond to GPIO7-0
Output: none
Notes: 0 = Rx, 1 = Tx for each bit.

IOCTL_ORB2_BASE_GET_GPIODIR
Function: Read from Direction Register 7-0
Input: none
Output: ULONG 7-0 valid
Notes: 0 = Rx, 1 = Tx for each bit.

IOCTL_ORB2_BASE_SET_GPIOREG
Function: Write to GPIO Data Register
Input: ULONG 7-0 correspond to GPIO7-0
Output: none
Notes: 0 or 1 for each bit. The bits marked for transmit in the direction register are
actually driven out. The other bits remain in the register but are not driven to the IO.

IOCTL_ORB2_BASE_GET_GPIOREG
Function: Read from Direction Register
Input: none
Output: ULONG
Notes:

 Embedded Solutions Page 13 of 33

IOCTL_ORB2_BASE_GET_GPIOIN
Function: Read from IO Register 7-0
Input: none
Output: ULONG 7-0 correspond to GPIO 7-0
Notes: data from IO lines. May not match data register if some bits are masked with
the direction register.

 Embedded Solutions Page 14 of 33

The IOCTLs defined for the PmcBis3ORB2Chan driver are described below:
There are 8 channels. Each channel corresponds to a COM port. The COM ports are
numbered 1-8 and the channels 0-7. COM1 = channel 0 … COM8 = channel 7.
COM1&2 support Ternary. COM 3&4 support LS. COM5&6 support TLM. COM7&8
support HS. It is important to use the calls associated with the channel being used or
unexpected results will occur. There is a great deal of overlap so you may get away
with it in some cases. The TX and RX control registers have separate calls using
separate structures to help organize your software and eliminate mistakes. Calls that
can be used across all of the channels are not numbered. Calls that only work with
specific channel pairs are numbered based on the COM ports supported – COM12 for
example.

IOCTL_ORB2_CHAN_GET_INFO
Function: Return the Instance Number and Current Driver Version
Input: None
Output: ORB2_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of ORB2_CHAN_DRIVER_DEVICE_INFO in the
DDORB2Chan.h header file.

IOCTL_ORB2_CHAN_GET_STATUS
Function: Return the value of the status register and clear latched bits
Input: None
Output: Status register value(ULONG)
Notes: Latched interrupt status and DMA error bits are cleared by read – [call writes
back and clears bits]. Other Latched Error bits not cleared by read. See quick
reference status bits below. Defines available in DDORB2Chan.h Detailed definitions
are available in the HW manual.

STAT_TX_FIFO_MT 0x00000001 //0 set when TX FIFO is empty
STAT_TX_FIFO_AE 0x00000002 //1 set when TX FIFO is Almost Empty
STAT_TX_FIFO_FULL 0x00000004 //2 set when TX FIFO is Full
STAT_RX_FIFO_MT 0x00000010 //4 set when RX FIFO is Empty
STAT_RX_FIFO_AF 0x00000020 //5 set when RX FIFO is Almost Full
STAT_RX_FIFO_FULL 0x00000040 //6 set when RX FIFO is Full
STAT_TX_DONE_INT 0x00000100 //8 Transmit Done Interrupt Occurred
STAT_RX_DONE_INT 0x00000200 //9 Receive Done Interrupt Occurred
STAT_TX_FIFO_INT 0x00000400 //10 Transmit FIFO Interrupt Occurred
STAT_RX_FIFO_INT 0x00000800 //11 Receive FIFO Interrupt Occurred
STAT_WR_DMA_ERR 0x00001000 //12 write DMA error
STAT_RD_DMA_ERR 0x00002000 //13 read DMA error
STAT_WR_DMA_INT 0x00004000 //14 write DMA Interrupt
STAT_RD_DMA_INT 0x00008000 //15 read DMA Interrupt
STAT_VERBOSE_OVFL 0x00020000 // 17 FIFO Full when time to write in Verbose mode
STAT_RX_OVFL 0x00040000 //18 FIFO Full when time to write RX

 Embedded Solutions Page 15 of 33

STAT_TX_UNFL 0x00080000 //19 FIFO MT when time to read TX
STAT_RX_IDLE 0x00100000 //20 set when state-machine is in the idle state
STAT_TX_IDLE 0x00200000 //21 set when state-machine is in the idle state
STAT_DMA_RD_IDLE 0x00400000 //22 set when Burst Out [read] DMA state-machine is in
the idle state
STAT_DMA_WR_IDLE 0x00800000 //23 set when Burst In [write] DMA state-machine is in
the idle state
STAT_VERBOSE_IDLE 0x01000000 //24 set when Verbose SM is IDLE COM1/2 only
STAT_FIFO_MT 0x01000000 //24 set when External FIFO is MT COM7/8 only
STAT_FIFO_AMT 0x02000000 //25 set when External FIFO is Almost MT
STAT_FIFO_AFL 0x04000000 //26 set when External FIFO is Almost Full
STAT_FIFO_FL 0x08000000 //27 set when External FIFO is Full
STAT_DIR 0x10000000 //28 Set when direction is transmit
STAT_TX_IDLE 0x20000000 //29 spare
STAT_LOC_INT 0x40000000 //30 set when local interrupt is potentially active [not
DMA], before mask
STAT_ACTIVE_INT 0x80000000 //31 channel interrupt is active [after mask and includes
DMA]

IOCTL_ORB2_CHAN_CLR_STATUS
Function: Clear Error Bits latched and not cleared by status read
Input: ULONG
Output: none
Notes: Clear latched error bits. Allows polling on FIFO status without losing potential
Error conditions. Write back with same bit position set to clear. Defines available in
DDORB2Chan.h Detailed definitions are available in the HW manual.

IOCTL_ORB2_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: ORB2_CHAN_FIFO_LEVELS structure
Output: None
Notes: The FIFO counts are compared to these levels to determine the value of the
STAT_TX_FF_AMT and STAT_RX_FF_AFL status bits.

IOCTL_ORB2_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: ORB2_CHAN_FIFO_LEVELS structure
Notes:

IOCTL_ORB2_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in FIFO’s.
Input: None
Output: ORB2_CHAN_FIFO_COUNTS structure

 Embedded Solutions Page 16 of 33

Notes: Returns the actual TX FIFO data counts and count including DMA pipeline RX
FIFO.

IOCTL_ORB2_CHAN_RESET_FIFOS
Function: Resets one or both internal FIFOs for the referenced channel.
Input: ORB2_FIFO_SEL enumeration type See structure definition in DDORB2Chan.h
Output: None
Notes: Resets RX, TX, Both (TX and RX) , All FIFO’s . ALL only applies to COM7&8.

IOCTL_ORB2_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause the event to be signaled.

IOCTL_ORB2_CHAN_ENABLE_INTERRUPT

Function: Enables the channel Master Interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each interrupt
occurs to re-enable it.

IOCTL_ORB2_CHAN_DISABLE_INTERRUPT

Function: Disables the channel Master Interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_ORB2_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing. Board level master interrupt also needs to be set.

 Embedded Solutions Page 17 of 33

IOCTL_ORB2_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts. The interrupts that deal
with the DMA transfers do not affect this value. Masked version of channel status.

IOCTL_ORB2_CHAN_SWW_TX_FIFO
Function: Writes a 32-bit data word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: none
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_ORB2_CHAN_SWR_RX_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_ORB2_CHAN_SET_CONT
Function: write to Channel Control register using structure
Input: ORB2_CHAN_CONT
Output: None
Notes: See DDORB2Chan.h for structure. See below for quick reference.

IOCTL_ORB2_CHAN_GET_CONT
Function: Read from Channel Control register using structure
Input: None
Output: ORB2_CHAN_CONT
Notes: See DDORB2Chan.h for structure. See below for quick reference.

FifoTestEn; // BiPass Mode Control
MIntEn; // Master Interrupt Enable
WrDmaEn; // Write DMA Interrupt Enable
RdDmaEn; // Read DMA Interrupt Enable
TxUrgent; // Set to give the TX DMA on this channel a higher priority
RxUrgent; // Set to give the RX DMA on this channel a higher priority

 Embedded Solutions Page 18 of 33

GP registers are used for a variety of purposes depending on the COM port. For
Ternary the registers are used to store the register data transmitted with StartTxReg.
For LS and HS the sync pattern is stored. For TLM register files take the place of these
registers. Please refer to the HW manual for more details.

IOCTL_ORB2_CHAN_SET_TX_REG
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TXREG
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TX_REG
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TXREG
Notes: See DDORB2Chan.h for structure.

TX_COUNT is used to set the delay and the size of the data sent per packet.

IOCTL_ORB2_CHAN_SET_TX_COUNT
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TXCOUNT
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TX_COUNT
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TXCOUNT
Notes: See DDORB2Chan.h for structure.

 Embedded Solutions Page 19 of 33

The transmit control register has the same address for each COM port and different bit
assignments or meanings. Each COM port has a separate TX and RX SET and GET
command to access the particular port with a unique structure for that port. Please be
careful to use the correct channel number when accessing these ports.

Ternary Control
IOCTL_ORB2_CHAN_SET_TX_COM12
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TXCOM12_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TX_COM12
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TXCOM12_CONTROL
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_RX_COM12
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_RXCOM12_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_RX_COM12
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_RXCOM12_CONTROL
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_SYNC_COM12
Function: write to Channel Sync registers using structure
Input: ORB2_CHAN_SYNCREG12
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_SYNC_COM12
Function: write to Channel Sync registers using structure
Input: None
Output: ORB2_CHAN_SYNCREG12
Notes: See DDORB2Chan.h for structure.

 Embedded Solutions Page 20 of 33

LS Control
IOCTL_ORB2_CHAN_SET_TX_COM34
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TXCOM34_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TX_COM34
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TXCOM34_CONTROL
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_RX_COM34
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_RXCOM34_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_RX_COM34
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_RXCOM34_CONTROL
Notes: See DDORB2Chan.h for structure.

 Embedded Solutions Page 21 of 33

TLM Control
IOCTL_ORB2_CHAN_SET_MAS_COM56
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_MASCOM56_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_MAS_COM56
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_MASCOM56_CONTROL
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_TAR_COM56
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TARCOM56_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TAR_COM56
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TARCOM56_CONTROL
Notes: See DDORB2Chan.h for structure.

TLM Register Files
IOCTL_ORB2_CHAN_SET_MAS_RF_COM56
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_MASREG
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_MAS_RF_COM56
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_MASREG
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_TAR_RF_COM56
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TARREG

 Embedded Solutions Page 22 of 33

Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TAR_RF_COM56
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TARREG
Notes: See DDORB2Chan.h for structure.

HS Control
IOCTL_ORB2_CHAN_SET_TX_COM78
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_TXCOM78_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_TX_COM78
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_TXCOM78_CONTROL
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_SET_RX_COM78
Function: write to Channel GP registers using structure
Input: ORB2_CHAN_RXCOM78_CONTROL
Output: None
Notes: See DDORB2Chan.h for structure.

IOCTL_ORB2_CHAN_GET_RX_COM78
Function: Read from Channel GP registers using structure
Input: None
Output: ORB2_CHAN_RXCOM78_CONTROL
Notes: See DDORB2Chan.h for structure.

 Embedded Solutions Page 23 of 33

Length Error Counts
IOCTL_ORB2_CHAN_SET_RX_LEN_ERR_CNT
Function: write to Channel Length Error Counter – Preload function
Input: ULONG
Output: None
Notes: The counter can be “preloaded” to 0 to clear or to some other value as needed
for your system. The count is incremented when a length error is detected . Only
applies to packet modes. Ternary, LS and HS [VP mode].

IOCTL_ORB2_CHAN_GET_RX_LEN_ERR_CNT
Function: Read from Channel Length Error Counter
Input: None
Output: ULONG
Notes: Read back preloaded value plus increment count. Count advances once per
Long [too much data] or short [not enough data] error occurrences in modes where the
length is checked – “packetized”. The type of status can be appended to the data [see
RX control structure for the port in use].

 Embedded Solutions Page 24 of 33

Write
DMA data is written to the referenced I/O channel device using the write command.
Writes are executed using the Win32 function WriteFile() and passing in the handle to
the I/O channel device opened with CreateFile(), a pointer to a pre-allocated buffer
containing the data to be written, an unsigned long integer that represents the size of
that buffer in bytes, a pointer to an unsigned long integer to contain the number of bytes
actually written, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

Read

DMA data is read from the referenced I/O channel device using the read command.
Reads are executed using the Win32 function ReadFile() and passing in the handle to
the I/O channel device opened with CreateFile(), a pointer to a pre-allocated buffer that
will contain the data read, an unsigned long integer that represents the size of that
buffer in bytes, a pointer to an unsigned long integer to contain the number of bytes
actually read, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

 Embedded Solutions Page 25 of 33

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchandisability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

 Embedded Solutions Page 26 of 33

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge is $125. An
open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax

support@dyneng.com

All information provided is Copyright Dynamic Engineering.

 Embedded Solutions Page 27 of 33

Appendix
Reference copy of structures for evaluation

The following structures shown are available in the DDORBChan.h and
DDORB2Base.h files included with the driver. The structures are included here for your
evaluation when considering the driver package. The electronic versions included with
the driver should be used with your project. The names track the register bit definitions.
For details about particular signals please refer to the HW manual.

Base:

#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

 // Driver/Device information
typedef struct _ORB2_BASE_DRIVER_DEVICE_INFO
{
 UCHAR DriverVersion;
 UCHAR XilinxVersion;
 UCHAR XilinxDesign;
 UCHAR PllDeviceId;
 UCHAR SwitchValue;
 ULONG InstanceNumber;
} ORB2_BASE_DRIVER_DEVICE_INFO, *PORB2_BASE_DRIVER_DEVICE_INFO;

typedef struct _ORB2_BASE_PLL_DATA
{
 UCHAR Data[PLL_MESSAGE_SIZE];
} ORB2_BASE_PLL_DATA, *PORB2_BASE_PLL_DATA;

 Embedded Solutions Page 28 of 33

Channel:

typedef enum _ORB2_CHAN_MODE_SEL {ORB2_PV, ORB2_VO, ORB2_SO, ORB2_CO}
ORB2_CHAN_MODE_SEL, *PORB2_CHAN_MODE_SEL;

typedef struct _ORB2_CHAN_DRIVER_DEVICE_INFO
{
 UCHAR DriverVersion;
 ULONG InstanceNumber;
} ORB2_CHAN_DRIVER_DEVICE_INFO, *PORB2_CHAN_DRIVER_DEVICE_INFO;

typedef enum _ORB2_CHAN_FIFO_SEL {ORB2_TX, ORB2_RX, ORB2_EXT, ORB2_ALL,
ORB2_BOTH} ORB2_CHAN_FIFO_SEL, *PORB2_CHAN_FIFO_SEL;

typedef struct _ORB2_CHAN_FIFO_LEVELS
{
 USHORT AlmostFull;
 USHORT AlmostEmpty;
} ORB2_CHAN_FIFO_LEVELS, *PORB2_CHAN_FIFO_LEVELS;

typedef struct _ORB2_CHAN_FIFO_COUNTS
{
 USHORT RxCountwPipe;
 USHORT TxCount;
} ORB2_CHAN_FIFO_COUNTS, *PORB2_CHAN_FIFO_COUNTS;

typedef struct _ORB2_CHAN_CONT
{
 BOOLEAN FifoTestEn;// BiPass Mode Control
 BOOLEAN MIntEn; // Master Interrupt Enable
 BOOLEAN WrDmaEn; // Write DMA Interrupt Enable
 BOOLEAN RdDmaEn; // Read DMA Interrupt Enable
 BOOLEAN TxUrgent; // Enable Higher Priority Processing for TX
 BOOLEAN RxUrgent; // Enable Higher Priority Processing for RX
} ORB2_CHAN_CONT, *PORB2_CHAN_CONT;

 Embedded Solutions Page 29 of 33

typedef struct _ORB2_CHAN_TXCOM12_CONTROL
{
 BOOLEAN TxStartReg; // start transmit state machine or stop, using Register based
data can be auto cleared
 BOOLEAN TxStartDma; // start transmit state machine or stop using DMA data
 BOOLEAN TxSmIntEn; // Set to enable Transmit Interrupt from State Machine
 BOOLEAN TxFifoIntEn; // Set to enable Transmit FIFO based Interrupt
 BOOLEAN TxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN TxSMode; // Set for S-1, cleared for S-0 encoding
 BOOLEAN TxSInv; // Set for inverted, cleared for standard S encoding
 BOOLEAN TxClkPol; // Set for Falling Edge Valid, Clear for Rising Edge Valid for
Transmitted data
 UCHAR TxClkDiv; // select clock frequency 8 bits [PLLA is reference, divide
by 2[n+1]
} ORB2_CHAN_TXCOM12_CONTROL, *PORB2_CHAN_TXCOM12_CONTROL;

typedef struct _ORB2_CHAN_RXCOM12_CONTROL
{
 BOOLEAN RxStart; // start or stop Receive state machine
 BOOLEAN RxStatusDisable; // Set to disable Status from being appended to Packet
data stored in FIFO
 BOOLEAN RxSmIntEn; // Set to enable Receive State Machine Interrupt
 BOOLEAN RxFifoIntEn; // Set to enable Receive FIFO based Interrupt
 BOOLEAN RxOverflowIntEn; // Set to enable FIFO Overflow based Interrupt
 BOOLEAN RxSMode; // Set for S-1, cleared for S-0 encoding
 BOOLEAN RxSInv; // Set for inverted, cleared for standard S encoding
 BOOLEAN RxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN RxClkPol; // Set for Falling Edge Valid, Clear for Rising Edge Valid for
Received data
 BOOLEAN RxDataFill; // Set for 1's, Clear for 0's padding for missing or shifted
down data on non aligned words
} ORB2_CHAN_RXCOM12_CONTROL, *PORB2_CHAN_RXCOM12_CONTROL;

typedef struct _ORB2_CHAN_TXREG
{
 ULONG TxReg0; // Data Register 0 - First to transmit from
 ULONG TxReg1; // Data Register 1 -
 ULONG TxReg2; // Data Register 2 -
 ULONG TxReg3; // Data Register 3 -
 ULONG TxReg4; // Data Register 4 -
 ULONG TxReg5; // Data Register 5 -
 ULONG TxReg6; // Data Register 6 -
 ULONG TxReg7; // Data Register 7 - Last to transmit from
} ORB2_CHAN_TXREG, *PORB2_CHAN_TXREG;

 Embedded Solutions Page 30 of 33

typedef struct _ORB2_CHAN_TXCOUNT
{
 USHORT TxBitCount; // Bit Count to Transmit, Word count in COM3,4 N+1 sent
 USHORT TxToneCount; // Minimum Delays [tone mode] between packet transmissions
N>=3 N+1 delayed
} ORB2_CHAN_TXCOUNT, *PORB2_CHAN_TXCOUNT;

typedef struct _ORB2_CHAN_TXCOM34_CONTROL
{
 BOOLEAN TxStartDma; // start transmit state machine or stop using DMA data
 BOOLEAN TxSmIntEn; // Set to enable Transmit Interrupt from State Machine
 BOOLEAN TxFifoIntEn; // Set to enable Transmit FIFO based Interrupt
 BOOLEAN TxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN TxMode; // Set for packetized, Clear for FIFO based transmission
 BOOLEAN TxClkPol; // Clear for standard Falling edge valid data, set for rising
edge valid
 BOOLEAN TxClkMaskEn; // Set for clock active during data only, clear for free
running
 UCHAR TxClkDiv; // select clock frequency 8 bits [PLLA is reference, divide
by 2[n+1]
} ORB2_CHAN_TXCOM34_CONTROL, *PORB2_CHAN_TXCOM34_CONTROL;

typedef struct _ORB2_CHAN_RXCOM34_CONTROL
{
 BOOLEAN RxStart; // start or stop Receive state machine
 BOOLEAN RxStatusDisable; // Set to disable Status being added to Packet data
 BOOLEAN RxSmIntEn; // Set to enable Receive State Machine Interrupt
 BOOLEAN RxFifoIntEn; // Set to enable Receive FIFO based Interrupt
 BOOLEAN RxOverflowIntEn; // Set to enable FIFO Overflow based Interrupt
 BOOLEAN RxValidMode; // set for Valid, clear for clock decoding
 BOOLEAN RxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN RxClkPol; // Clr (std) Falling edge valid, set rising edge valid
 BOOLEAN RxDataFill; // Set for 1's, Clear for 0's padding for missing or
shifted down data on non aligned words
 ORB2_CHAN_MODE_SEL RxModeSm; // ORB2_PV [Packet Valid], ORB2_VO [Valid Only],
ORB2_SO [Sync Only], ORB2_CO [Clk Only]
 BOOLEAN RxSyncEn0; // Set to include 7-0 in synch check
 BOOLEAN RxSyncEn1; // Set to include 15-8 in synch check
 BOOLEAN RxSyncEn2; // Set to include 23-16 in synch check
 BOOLEAN RxSyncEn3; // Set to include 31-24 in synch check
 BOOLEAN RxSyncEn4; // Set to include 39-32 in synch check
 BOOLEAN RxSyncEn5; // Set to include 47-40 in synch check
 BOOLEAN RxSyncEn6; // Set to include 55-48 in synch check
 BOOLEAN RxSyncEn7; // Set to include 63-56 in synch check
 BOOLEAN RxSyncSearch; // set to cause mode 10 to reacquire the sync
pattern, auto cleared when pattern detected

} ORB2_CHAN_RXCOM34_CONTROL, *PORB2_CHAN_RXCOM34_CONTROL;

 Embedded Solutions Page 31 of 33

typedef struct _ORB2_CHAN_MASCOM56_CONTROL
{
 BOOLEAN MStartReg; // start transmit state machine
 BOOLEAN MIoEn; // Enable IO for Master Fucntion [Clk and Gate]
 BOOLEAN MSmIntEn; // Set to enable Transmit Interrupt from State Machine
 BOOLEAN MClkPol; // Clear for standard Falling edge valid data, set for rising
edge valid
 BOOLEAN MClkMaskEn; // Set for clock active during data only, clear for free
running
 BOOLEAN MGatePolarity; // Set for active low, Clear for active high Gate
 BOOLEAN MSysSmDataIn; // Set for test path data, clear for normal operation
=> input to Master Register File
 BOOLEAN MTlmType; // Clear for Type 1 Set for Type II
 UCHAR MClkDiv; // select clock frequency 8 bits [PLLA is reference,
divide by 2[n+1]
} ORB2_CHAN_MASCOM56_CONTROL, *PORB2_CHAN_MASCOM56_CONTROL;

typedef struct _ORB2_CHAN_TARCOM56_CONTROL
{
 BOOLEAN TStart; // start or stop Receive state machine
 BOOLEAN TSmIntEn; // Set to enable Receive State Machine Interrupt
 BOOLEAN TClkPol; // Clr (std)Falling edge valid, set rising edge valid
 BOOLEAN TGatePolarity; // Set for active low, Clear for active high Gate
 BOOLEAN TTlmType; // Clear for Type 1 Set for Type II

} ORB2_CHAN_TARCOM56_CONTROL, *PORB2_CHAN_TARCOM56_CONTROL;

// Master Mode Register File
// When writing be sure to use test mode setting in Master Control register for data path
// Data stored here when master mode is tasked to retrieve external data
typedef struct _ORB2_CHAN_MASREG
{
 ULONG MReg0; // Data Register 0 - First register read in
 ULONG MReg1; // Data Register 1 -
 ULONG MReg2; // Data Register 2 -
 ULONG MReg3; // Data Register 3 -
 ULONG MReg4; // Data Register 4 -
 ULONG MReg5; // Data Register 5 -
 ULONG MReg6; // Data Register 6 -
 ULONG MReg7; // Data Register 7 - Last read in
} ORB2_CHAN_MASREG, *PORB2_CHAN_MASREG;

 Embedded Solutions Page 32 of 33

// Targat Mode Register File
// Store data here to transmit out when tasked from external device
typedef struct _ORB2_CHAN_TARREG
{
 ULONG TReg0; // Data Register 0 - First to transmit from
 ULONG TReg1; // Data Register 1 -
 ULONG TReg2; // Data Register 2 -
 ULONG TReg3; // Data Register 3 -
 ULONG TReg4; // Data Register 4 -
 ULONG TReg5; // Data Register 5 -
 ULONG TReg6; // Data Register 6 -
 ULONG TReg7; // Data Register 7 - Last to transmit from
} ORB2_CHAN_TARREG, *PORB2_CHAN_TARREG;

typedef struct _ORB2_CHAN_TXCOM78_CONTROL
{
 BOOLEAN TxStartDma; // start transmit state machine or stop using DMA data
 BOOLEAN TxSmIntEn; // Set to enable Transmit Interrupt from State Machine
 BOOLEAN TxFifoIntEn; // Set to enable Transmit FIFO based Interrupt
 BOOLEAN TxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN TxMode; // Set for packetized, Clear for FIFO based transmission
 BOOLEAN TxClkPol; // Clr (std) Falling edge valid, set rising edge valid
 BOOLEAN TxClkMaskEn; // Set for bursted, clear for free running
 BOOLEAN TxDataValidPol; // Set for inversion, clear for standard operation
 BOOLEAN TxFifoMuxCont; // clear to select Tx Path into external FIFO, Set to
select Rx path to external FIFO
 BOOLEAN TxFifoLoad; // Set or Clear to control access to Programmable registers

} ORB2_CHAN_TXCOM78_CONTROL, *PORB2_CHAN_TXCOM78_CONTROL;

 Embedded Solutions Page 33 of 33

typedef struct _ORB2_CHAN_RXCOM78_CONTROL
{
 BOOLEAN RxStart; // start or stop Receive state machine
 BOOLEAN RxStatusDisable; // Set to disable Status being appended to Packet
 BOOLEAN RxSmIntEn; // Set to enable Receive State Machine Interrupt
 BOOLEAN RxFifoIntEn; // Set to enable Receive FIFO based Interrupt
 BOOLEAN RxOverflowIntEn; // Set to enable FIFO Overflow based Interrupt
 BOOLEAN RxValidMode; // set for Valid, clear for clock decoding
 BOOLEAN RxDataOrder; // Set to reverse, clear for pass through
 BOOLEAN RxClkPol; // Clr (std) Falling edge valid set for rising edge valid
 BOOLEAN RxDataFill; // Set for 1's, Clear for 0's padding for missing or
shifted down data on non aligned words
 BOOLEAN RxDataValidPol; // Set for inversion, clear for standard operation
 BOOLEAN RxFifoPathEn; // Clear to disable, Set to enable auto read from
external FIFO into RX DMA FIFO
 ORB2_CHAN_MODE_SEL RxModeSm; // ORB2_PV [Packetized, Valid], ORB2_VO [Valid
Only], ORB2_SO [Sync Only], ORB2_CO [Clk Only]
 BOOLEAN RxSyncEn0; // Set to include 7-0 in synch check
 BOOLEAN RxSyncEn1; // Set to include 15-8 in synch check
 BOOLEAN RxSyncEn2; // Set to include 23-16 in synch check
 BOOLEAN RxSyncEn3; // Set to include 31-24 in synch check
 BOOLEAN RxSyncEn4; // Set to include 39-32 in synch check
 BOOLEAN RxSyncEn5; // Set to include 47-40 in synch check
 BOOLEAN RxSyncEn6; // Set to include 55-48 in synch check
 BOOLEAN RxSyncEn7; // Set to include 63-56 in synch check
 BOOLEAN RxSyncSearch; // set to cause mode 10 to reacquire the
sync pattern, auto cleared when pattern detected

} ORB2_CHAN_RXCOM78_CONTROL, *PORB2_CHAN_RXCOM78_CONTROL;

