
DYNAMIC ENGINEERING 
435 Park Dr., Ben Lomond, Calif. 95005 
831-336-8891     Fax  831-336-3840 

 http://www.dyneng.com 
sales@dyneng.com 

 Est. 1988 
 

 
 

User Manual 
 
 

PMC BiSerial-II NG1 
Driver Documentation 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Revision B 
Corresponding Hardware: Revision A 

10-2002-1201

http://www.dyneng.com


  Page    2      Electronics Design  •  Manufacturing Services   

 

 

PMC BiSerial-II NG1 
Bi-directional Serial Data Interface
PMC Module 

Dynamic Engineering 
435 Park Drive 
Ben Lomond, CA 95005 
831- 336-8891 
831-336-3840 FAX  

This document contains information of proprietary 
interest to Dynamic Engineering. It has been supplied in 
confidence and the recipient, by accepting this material, 
agrees that the subject matter will not be copied or 
reproduced, in whole or in part, nor its contents 
revealed in any manner or to any person except to 
meet the purpose for which it was delivered. 
 
Dynamic Engineering has made every effort to ensure 
that this manual is accurate and complete. Still, the 
company reserves the right to make improvements or 
changes in the product described in this document at 
any time and without notice. Furthermore, Dynamic 
Engineering assumes no liability arising out of the 
application or use of the device described herein. 
 
The electronic equipment described herein generates, 
uses, and can radiate radio frequency energy. 
Operation of this equipment in a residential area is likely 
to cause radio interference, in which case the user, at 
his own expense, will be required to take whatever 
measures may be required to correct the interference.
 
Dynamic Engineering’s products are not authorized for 
use as critical components in life support devices or 
systems without the express written approval of the 
president of Dynamic Engineering. 
 
This product has been designed to operate with PMC 
Module carriers and compatible user-provided 
equipment. Connection of incompatible hardware is 
likely to cause serious damage. ©2003 by Dynamic Engineering. 

 
Trademarks and registered trademarks are owned by their 
respective manufactures. 
Manual Revision B. Revised May 20, 2003. 



  Page    3      Electronics Design  •  Manufacturing Services   

Table of Contents
 

Introduction 5 

Note 5 

Driver Installation 5 

Driver Startup 6 

IO Controls 8 
IOCTL_PB2_NG1_GET_VERSION 8 
IOCTL_PB2_NG1_GET_SW_ID 8 
IOCTL_PB2_NG1_GET_STATUS0 9 
IOCTL_PB2_NG1_GET_STATUS1 9 
IOCTL_PB2_NG1_SET_BASE_CONFIG 9 
IOCTL_PB2_NG1_GET_BASE_CONFIG 10 
IOCTL_PB2_NG1_SET_INTEN_CONFIG 10 
IOCTL_PB2_NG1_GET_INTEN_CONFIG 10 
IOCTL_PB2_NG1_SET_UART1_CONFIG 10 
IOCTL_PB2_NG1_GET_UART1_CONFIG 11 
IOCTL_PB2_NG1_SET_UART2_CONFIG 11 
IOCTL_PB2_NG1_GET_UART2_CONFIG 11 
IOCTL_PB2_NG1_SET_INDEX1_CONFIG 11 
IOCTL_PB2_NG1_GET_INDEX1_CONFIG 12 
IOCTL_PB2_NG1_SET_INDEX2_CONFIG 12 
IOCTL_PB2_NG1_GET_INDEX2_CONFIG 12 
IOCTL_PB2_NG1_SET_TERMINATIONS 12 
IOCTL_PB2_NG1_GET_TERMINATIONS 13 
IOCTL_PB2_NG1_SET_FIFO_LEVELS 13 
IOCTL_PB2_NG1_GET_FIFO_LEVELS 13 
IOCTL_PB2_NG1_RESET_FIFOS 13 
IOCTL_PB2_NG1_LOAD_FIFO_A 14 
IOCTL_PB2_NG1_READ_FIFO_A 14 
IOCTL_PB2_NG1_LOAD_UART1_RD_DATA 14 
IOCTL_PB2_NG1_READ_UART1_RD_DATA 14 
IOCTL_PB2_NG1_READ_UART1_RSP_PACKET 15 
IOCTL_PB2_NG1_LOAD_FIFO_B 15 
IOCTL_PB2_NG1_READ_FIFO_B 15 
IOCTL_PB2_NG1_LOAD_UART2_RD_DATA 16 
IOCTL_PB2_NG1_READ_UART2_RD_DATA 16 
IOCTL_PB2_NG1_READ_UART2_RSP_PACKET 16 
IOCTL_PB2_NG1_LOAD_INDEX1 17 



  Page    4      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_READ_INDEX1 17 
IOCTL_PB2_NG1_LOAD_INDEX1_TX1 17 
IOCTL_PB2_NG1_READ_INDEX1_TX1 17 
IOCTL_PB2_NG1_LOAD_INDEX1_TX2 18 
IOCTL_PB2_NG1_READ_INDEX1_TX2 18 
IOCTL_PB2_NG1_LOAD_INDEX2 18 
IOCTL_PB2_NG1_READ_INDEX2 18 
IOCTL_PB2_NG1_LOAD_INDEX2_TX1 19 
IOCTL_PB2_NG1_READ_INDEX2_TX1 19 
IOCTL_PB2_NG1_LOAD_INDEX2_TX2 19 
IOCTL_PB2_NG1_READ_INDEX2_TX2 19 
IOCTL_PB2_NG1_REGISTER_EVENT 20 
IOCTL_PB2_NG1_ENABLE_INTERRUPT 20 
IOCTL_PB2_NG1_DISABLE_INTERRUPT 20 
IOCTL_PB2_NG1_FORCE_INTERRUPT 21 
IOCTL_PB2_NG1_LOAD_UART1_LRU_ID 21 
IOCTL_PB2_NG1_LOAD_UART2_LRU_ID 21 

WARRANTY AND REPAIR 22 

Service Policy 23 
Out of Warranty Repairs 23 

For Service Contact: 23 
 
 



  Page    5      Electronics Design  •  Manufacturing Services   

Introduction 
The PB2_NG1 driver is a Windows 2000 driver for the PMC BiSerial-II NG1 
board from Dynamic Engineering. Each PMC BiSerial-II NG1 board transmits 
and receives two channels of serial data over full-duplex UART interfaces, 
as well as two half-duplex Index channels with EIA-RS-485 differential drivers 
and receivers. A separate “Device Object” controls each PMC BiSerial-II 
NG1 board, and a separate handle references each Device Object. IO 
Control calls (IOCTLs) are used to configure the hardware and transfer data 
to and from the device over the PCI bus. 

Note 
This documentation will provide information about all calls made to the 
driver, and how the driver interacts with the device for each of these calls. 
For more detailed information on the hardware implementation, refer to the 
PMC BiSerial-II NG1 device user manual.  

Driver Installation 
There are several files provided in each driver drop. These files include 
PB2_NG1.sys, PB2_NG1.inf, DDPB2_NG1.h, PB2_NG1Test.exe, and 
PB2_NG1Test source files. 
 
When the Windows2000 system sees the hardware for the first time it will 
start the Found New Hardware Wizard. Click on next and select Search for 
a suitable driver for my device. Click on next and specify a location that 
contains the PB2_NG1.sys and PB2_NG1.inf files. Follow the prompts until 
the Wizard finishes and the driver is installed. 
 
The DDPB2_NG1.h file is the C header file that defines the Application 
Program Interface (API) to the driver. This file is required at compile time by 
any application that wishes to interface with the PMC BiSerial-II NG1 device. 
It is not needed by the driver installation. 
 
The PB2_NG1test.exe file is a sample Windows 2000 console application 
that makes calls into the PB2_NG1 driver to test the driver calls without 
actually writing an application. It is not required during the driver 
installation. 
 



  Page    6      Electronics Design  •  Manufacturing Services 

Driver Startup 
In Windows2000 once the driver has been installed it will start 
automatically when it sees the hardware. 
 
A handle can be opened to a specific board by using the CreateFile() 
function call and passing in the device name obtained from the system. 
The interface to the device is identified using a globally unique identifier 
(GUID), which is defined in DDPB2_NG1.h. 
 
Below is example code for opening a handle for device 0. The device 
number is underlined and italicized in the SetupDiEnumDeviceInterfaces 
call. 
 
#define MAX_DEVICE_NAME 256 // the maximum length of the device name for 
                            //  a given instance of an interface 
 
HANDLE   hPb2_ng1 // Handle to the device object 
// Return status from command  
LONG     status; 
// Handle to device interface information structure 
HDEVINFO hDeviceInfo; 
// The actual symbolic link name to use in the createfile 
CHAR     deviceName[MAX_DEVICE_NAME]; 
// Size of buffer required to get the symbolic link name 
DWORD    requiredSize; 
// Interface data structures for this device 
SP_DEVICE_INTERFACE_DATA         interfaceData; 
PSP_DEVICE_INTERFACE_DETAIL_DATA pDeviceDetail; 
 
hDeviceInfo = SetupDiGetClassDevs((LPGUID)&GUID_DEVINTERFACE_PB2_NG1, 
                                  NULL, 
                                  NULL, 
                                  DIGCF_PRESENT | DIGCF_DEVICEINTERFACE); 
 
if(hDeviceInfo == INVALID_HANDLE_VALUE) 
{ 
   printf("**Error: couldn't get class info, (%d)\n", 
          GetLastError()); 
   exit(-1); 
} 
 
interfaceData.cbSize = sizeof(interfaceData); 
 
// Find the interface for device 0 
if(!SetupDiEnumDeviceInterfaces(hDeviceInfo, 
                                NULL, 
                                (LPGUID)&GUID_DEVINTERFACE_PB2_NG1, 
                                0, 
                                &interfaceData)) 
{ 
   status = GetLastError(); 



  Page    7      Electronics Design  •  Manufacturing Services 

   if(status == ERROR_NO_MORE_ITEMS) 
   { 
      printf("**Error: couldn't find device(no more items), (%d)\n", 0); 
      SetupDiDestroyDeviceInfoList(hDeviceInfo); 
      exit(-1); 
   } 
   else 
   { 
      printf("**Error: couldn't enum device, (%d)\n", 
             status); 
      SetupDiDestroyDeviceInfoList(hDeviceInfo); 
      exit(-1); 
   } 
} 
 
// Get the details data to obtain the symbolic link name 
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo, 
                                    &interfaceData, 
                                    NULL, 
                                    0, 
                                    &requiredSize, 
                                    NULL)) 
{ 
   if(GetLastError() != ERROR_INSUFFICIENT_BUFFER) 
   { 
      printf("**Error: couldn't get interface detail, (%d)\n", 
             GetLastError()); 
      SetupDiDestroyDeviceInfoList(hDeviceInfo); 
      exit(-1); 
   } 
} 
 
// Allocate a buffer to get detail 
pDeviceDetail = (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize); 
if(pDeviceDetail == NULL) 
{ 
   printf("**Error: couldn't allocate interface detail\n"); 
   SetupDiDestroyDeviceInfoList(hDeviceInfo); 
   exit(-1); 
} 
 
pDeviceDetail->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA); 
 
// Get the detail info 
if(!SetupDiGetDeviceInterfaceDetail(hDeviceInfo, 
                                    &interfaceData, 
                                    pDeviceDetail, 
                                    requiredSize, 
                                    NULL, 
                                    NULL)) 
{ 
   printf("**Error: couldn't get interface detail(2), (%d)\n", 
          GetLastError()); 
   SetupDiDestroyDeviceInfoList(hDeviceInfo); 
   free(pDeviceDetail); 
   exit(-1); 
} 



  Page    8      Electronics Design  •  Manufacturing Services 

 
// Save the name 
lstrcpyn(deviceName, 
         pDeviceDetail->DevicePath, 
         MAX_DEVICE_NAME); 
 
// Cleanup search 
free(pDeviceDetail); 
SetupDiDestroyDeviceInfoList(hDeviceInfo); 
 
// Open driver 
// Create the handle to the device 
hPb2_ng1 = CreateFile(deviceName, 
                      GENERIC_READ    | GENERIC_WRITE, 
                      FILE_SHARE_READ | FILE_SHARE_WRITE, 
                      NULL, 
                      OPEN_EXISTING, 
                      NULL, 
                      NULL); 

 

IO Controls 
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs 
refer to a single Device Object in the driver, which controls a single board. 
IOCTLs are called using the Win32 function DeviceIoControl(), and passing 
in the handle to the device opened with CreateFile(). IOCTLs generally have 
input parameters, output parameters, or both. Often a custom structure is 
used. 
 
 

IOCTL_PB2_NG1_GET_VERSION 

Function: Returns the driver and Xilinx version information. 
Input: none 
Output: ULONG 
Notes: The Xilinx version is encoded in bits 8 to 15 and the driver version 
is encoded in bits 0 to 7. 
 
 

IOCTL_PB2_NG1_GET_SW_ID 

Function: Returns the user switch value. 
Input: none 
Output: ULONG 
Notes: Returns the value set in the eight-position DIP switch on the PMC 
BiSerial-II NG1. 



  Page    9      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_GET_STATUS0 

Function: Returns the board status. 
Input: none 
Output: ULONG 
Notes: Returns Status information for a given board obtained from the 
PB2_NG1_STAT0 register. This includes FIFO flags indicating the amount of 
data in FIFOs A and B and response FIFOs 1 and 2, the state of the static 
RS-485 lines when these are configured as inputs, and the interrupt status 
bit, which indicates that an enabled interrupt condition is active. See the bit 
definitions in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_GET_STATUS1 

Function: Returns the board status. 
Input: none 
Output: ULONG 
Notes: Returns Status information for a given board obtained from the 
PB2_NG1_STAT1 register. This consists of latched interrupt status bits 
indicating the cause of an interrupt. After the status is read, a value is 
written back to this register to clear only the specific interrupt conditions 
that were read. This will insure that no interrupt cause is missed due to 
being asserted between the read and write cycles. See the bit definitions in 
the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_BASE_CONFIG 

Function: Sets the base configuration of the board. 
Input: ULONG 
Output: none 
Notes: Controls the clock source and divisor for determining the reference 
clock frequency and enables the internal clock as well as the two external 
clock outputs. Also sets the direction of the static RS-485 signals, the 
output values of these when they are configured as outputs, and the FIFO A 
and B loop-back path enables. See the bit definitions in the DDPB2_NG1.h 
header file for more information. 
 
 
 
 



  Page    10      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_GET_BASE_CONFIG 

Function: Returns the base configuration of the board. 
Input: none 
Output: ULONG 
Notes: Returns the base configuration register value, excluding the FIFO ld 
and enable bits. See the bit definitions in the DDPB2_NG1.h header file for 
more information. 
 
 

IOCTL_PB2_NG1_SET_INTEN_CONFIG 

Function: Sets the interrupt enable configuration. 
Input: ULONG 
Output: none 
Notes: Controls the individual interrupt enables for all sixteen interrupt 
conditions. 
 
 

IOCTL_PB2_NG1_GET_INTEN_CONFIG 

Function: Returns the interrupt enable configuration. 
Input: none 
Output: ULONG 
Notes: Returns the individual enable states of the sixteen possible interrupt 
conditions. 
 
 

IOCTL_PB2_NG1_SET_UART1_CONFIG 

Function: Sets the configuration of the UART1 interface. 
Input: ULONG 
Output: none 
Notes: Controls all the functions of the UART1 interface except the LRU 
identification fields. See the bit definitions in the DDPB2_NG1.h header file 
for more information. 
 
 
 
 
 



  Page    11      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_GET_UART1_CONFIG 

Function: Returns the UART1 configuration. 
Input: none 
Output: ULONG 
Notes: Returns the state of the UART1 configuration. See the bit 
definitions in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_UART2_CONFIG 

Function: Sets the configuration of the UART2 interface. 
Input: ULONG 
Output: none 
Notes: Controls all the functions of the UART2 except the LRU identification 
fields. See the bit definitions in the DDPB2_NG1.h header file for more 
information. 
 
 

IOCTL_PB2_NG1_GET_UART2_CONFIG 

Function: Returns the UART2 configuration. 
Input: none 
Output: ULONG 
Notes: Returns the state of the UART2 configuration. See the bit 
definitions in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_INDEX1_CONFIG 

Function: Sets the configuration of the Index1 interface. 
Input: ULONG 
Output: none 
Notes: Controls all the functions of the Index1 interface. See the bit 
definitions in the DDPB2_NG1.h header file for more information. 
 
 
 
 
 



  Page    12      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_GET_INDEX1_CONFIG 

Function: Returns the Index1 configuration. 
Input: none 
Output: ULONG 
Notes: Returns the state of the Index1 configuration. See the bit definitions 
in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_INDEX2_CONFIG 

Function: Sets the configuration of the Index2 interface. 
Input: ULONG 
Output: none 
Notes: Controls all the functions of the Index2 interface. See the bit 
definitions in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_GET_INDEX2_CONFIG 

Function: Returns the Index2 configuration. 
Input: none 
Output: ULONG 
Notes: Returns the state of the Index2 configuration. See the bit definitions 
in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_TERMINATIONS 

Function: Sets the configuration of the driver terminations. 
Input: ULONG 
Output: none 
Notes: Sets the configuration of the terminations for the IO lines. See the 
bit definitions in the DDPB2_NG1.h header file for more information. 
 
 
 
 
 
 



  Page    13      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_GET_TERMINATIONS 

Function: Returns the configuration of the driver terminations. 
Input: none 
Output: ULONG 
Notes: Returns the configuration of the terminations for the IO lines. See 
the bit definitions in the DDPB2_NG1.h header file for more information. 
 
 

IOCTL_PB2_NG1_SET_FIFO_LEVELS 

Function: Sets FIFO A and B almost full and almost empty levels. 
Input: FIFO_LEVELS 
Output: none 
Notes: Sets the almost full level for both FIFOs; the value is the number of 
words below full that the PAF flag becomes asserted. Sets the almost 
empty level for the FIFOs; the value is the number of words above empty for 
which the PAE flag is asserted. The UART state machines are stopped by 
this command, since normal FIFO data accesses are disabled when these 
level registers are accessed. Values are checked to not exceed the FIFO 
sizes. 
 
 

IOCTL_PB2_NG1_GET_FIFO_LEVELS 

Function: Returns almost full and almost empty FIFO levels. 
Input: none 
Output: FIFO_LEVELS 
Notes: Returns the almost full and the almost empty level for FIFO A and B. 
The UART state machines are stopped by this command, since normal FIFO 
data accesses are disabled when these level registers are accessed. 
 
 

IOCTL_PB2_NG1_RESET_FIFOS 

Function: Resets the transmit and receive FIFOs. 
Input: FIFO_RESETS 
Output: none 
Notes: Resets either or both FIFOs, as indicated in the FIFO_RESETS 
structure. This will clear all data and reset the almost full and empty values 
to their default values. 
 



  Page    14      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_LOAD_FIFO_A 

Function: Loads one 32-bit word into FIFO A, if it is configured to accept 
data. 
Input: ULONG 
Output: none 
Notes: The FIFO must be enabled, and UART channel 1 must be configured 
as a controller, or the FIFO loop test enabled. 
 
 

IOCTL_PB2_NG1_READ_FIFO_A 

Function: Reads one 32-bit word from FIFO A, if it is configured to retrieve 
data. 
Input: none 
Output: ULONG 
Notes: The FIFO must be enabled, and UART channel 1 must be configured 
as a terminal, or the FIFO loop test enabled. 
 
 

IOCTL_PB2_NG1_LOAD_UART1_RD_DATA 

Function: Loads a 16-bit word into the UART 1 read response data 
register. 
Input: ULONG 
Output: none 
Notes: The data overwrites any data that was previously written to this 
register. This data will be returned in the data field of the response to a 
read request packet. 
 
 

IOCTL_PB2_NG1_READ_UART1_RD_DATA 

Function: Returns the data currently loaded into the read response data 
register. 
Input: none 
Output: ULONG 
Notes: This data is the last 16-bit data word written to the register. This 
call is mainly for test purposes. 
 
 



  Page    15      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_READ_UART1_RSP_PACKET 

Function: Returns an acknowledge packet from response FIFO 1. 
Input: none 
Output: ACK_PACKET 
Notes: This call will return an ACK_PACKET structure containing three 
fields. The second field is the length of the packet in bytes, this should be 
two for an acknowledge1, or five for an acknowledge2. The third field is an 
array of bytes that contains the packet data. The first field is a BOOLEAN 
value, valid, that is true if sufficient bytes were available to satisfy the 
packet length encoded in the packet size field. At most five bytes will be 
read from the FIFO. 
 
 

IOCTL_PB2_NG1_LOAD_FIFO_B 

Function: Loads one 32-bit word into FIFO B, if it is configured to accept 
data. 
Input: ULONG 
Output: none 
Notes: The FIFO must be enabled, and UART channel 2 must be configured 
as a controller, or the FIFO B loop test enabled. 
 
 

IOCTL_PB2_NG1_READ_FIFO_B 

Function: Reads one 32-bit word from FIFO B, if it is configured to retrieve 
data. 
Input: none 
Output: ULONG 
Notes: The FIFO must be enabled, and UART channel 2 must be configured 
as a terminal, or the FIFO loop test enabled. 
 
 
 
 
 
 
 



  Page    16      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_LOAD_UART2_RD_DATA 

Function: Loads a 16-bit word into the UART 2 read response data 
register. 
Input: ULONG 
Output: none 
Notes: The data overwrites any data that was previously written to this 
register. This data will be returned in the data field of the response to a 
read request packet. 
 
 

IOCTL_PB2_NG1_READ_UART2_RD_DATA 

Function: Returns the data currently loaded into the read response data 
register. 
Input: none 
Output: ULONG 
Notes: This data is the last 16-bit data word written to the register. This 
call is mainly for test purposes. 
 
 

IOCTL_PB2_NG1_READ_UART2_RSP_PACKET 

Function: Returns an acknowledge packet from response FIFO 2. 
Input: none 
Output: ACK_PACKET 
Notes: This call will return an ACK_PACKET structure containing three 
fields. The second field is the length of the packet in bytes, this should be 
two for an acknowledge1, or five for an acknowledge2. The third field is an 
array of bytes that contains the packet data. The first field is a BOOLEAN 
value, valid, that is true if sufficient bytes were available to satisfy the 
packet length encoded in the packet size field. At most five bytes will be 
read from the FIFO. 
 
 
 
 
 
 
 



  Page    17      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_LOAD_INDEX1 

Function: Loads a nine-bit word into the Index 1 data register. 
Input: ULONG 
Output: none 
Notes: If Index channel 1 is enabled and auto-transmit is not enabled, the 
data written to this register is shifted out immediately with start and stop 
bits added. 
 
 

IOCTL_PB2_NG1_READ_INDEX1 

Function: Reads a nine or twelve-bit response word from Index channel 1. 
Input: none 
Output: ULONG 
Notes: If the Index 1 data available bit is set, valid data will be read from 
this data register. 
 
 

IOCTL_PB2_NG1_LOAD_INDEX1_TX1 

Function: Loads a nine-bit data word into the first auto-data register for 
Index 1. 
Input: ULONG 
Output: none 
Notes: This data will be sent by Index channel 1 when the auto-transmit 
mode is enabled and the Tx1 register is enabled. 
 
 

IOCTL_PB2_NG1_READ_INDEX1_TX1 

Function: Reads the nine-bit data word last written to the Index 1 Tx1 
register. 
Input: none 
Output: ULONG 
Notes: This call is mainly used for test purposes. 
 
 
 
 



  Page    18      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_LOAD_INDEX1_TX2 

Function: Loads a nine-bit data word into the second auto-transmit register 
for Index 1. 
Input: ULONG 
Output: none 
Notes: This data will be sent by Index channel 1 when the auto-transmit 
mode is enabled and the Tx2 register is enabled. 
 
 

IOCTL_PB2_NG1_READ_INDEX1_TX2 

Function: Reads the nine-bit data word last written to the Index 1 Tx2 
register. 
Input: none 
Output: ULONG 
Notes: This call is mainly used for test purposes. 
 
 

IOCTL_PB2_NG1_LOAD_INDEX2 

Function: Loads a nine-bit word into the Index 2 data register. 
Input: ULONG 
Output: none 
Notes: If Index channel 2 is enabled and auto-transmit is not enabled, the 
data written to this register is shifted out immediately with start and stop 
bits added. 
 
 

IOCTL_PB2_NG1_READ_INDEX2 

Function: Reads a nine or twelve-bit response word from Index channel 2. 
Input: none 
Output: ULONG 
Notes: If the Index 2 data available bit is set, valid data will be read from 
this data register. 
 
 
 
 



  Page    19      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_LOAD_INDEX2_TX1 

Function: Loads a nine-bit data word into the first auto-data register for 
Index 2. 
Input: ULONG 
Output: none 
Notes: This data will be sent by Index channel 2 when the auto-transmit 
mode is enabled and the Tx1 register is enabled. 
 
 

IOCTL_PB2_NG1_READ_INDEX2_TX1 

Function: Reads the nine-bit data word last written to the Index 2 Tx1 
register. 
Input: none 
Output: ULONG 
Notes: This call is mainly used for test purposes. 
 
 

IOCTL_PB2_NG1_LOAD_INDEX2_TX2 

Function: Loads a nine-bit data word into the second auto-transmit register 
for Index 2. 
Input: ULONG 
Output: none 
Notes: This data will be sent by Index channel 2 when the auto-transmit 
mode is enabled and the Tx2 register is enabled. 
 
 

IOCTL_PB2_NG1_READ_INDEX2_TX2 

Function: Reads the nine-bit data word last written to the Index 2 Tx2 
register. 
Input: none 
Output: ULONG 
Notes: This call is mainly used for test purposes. 
 
 
 
 



  Page    20      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_REGISTER_EVENT 

Function: Registers an event to be signaled when an interrupt occurs. 
Input: Event Handle 
Output: none 
Notes: The caller creates an event with CreateEvent() and supplies the 
handle returned from that call as the input to this IOCTL. The driver then 
obtains a system pointer to the event and signals the event when an 
interrupt is serviced. The user interrupt service routine waits on this event, 
allowing it to respond to the interrupt. 
 
 

IOCTL_PB2_NG1_ENABLE_INTERRUPT 

Function: Sets the master interrupt enable to true. 
Input: none 
Output: none 
Notes: Sets the master interrupt enable, leaving all other bit values in the 
interrupt enable configuration register the same. This IOCTL is used in the 
user interrupt processing function to re-enable the interrupts after they 
were disabled in the driver interrupt service routine. This allows that 
function to enable the interrupts without knowing the particulars of the 
other configuration bits. 
 
 

IOCTL_PB2_NG1_DISABLE_INTERRUPT 

Function: Sets the master interrupt enable to true. 
Input: none 
Output: none 
Notes: Clears the master interrupt enable, leaving all other bit values in the 
interrupt enable configuration register the same. This IOCTL is used when 
interrupt processing is no longer desired. 
 
 
 
 
 
 
 



  Page    21      Electronics Design  •  Manufacturing Services 

IOCTL_PB2_NG1_FORCE_INTERRUPT 

Function: Causes a system interrupt to occur. 
Input: none 
Output: none 
Notes: Causes an interrupt to be asserted on the PCI bus if the master 
interrupt enable is set. This IOCTL is used for development, to test interrupt 
processing. 
 
 

IOCTL_PB2_NG1_LOAD_UART1_LRU_ID 

Function: Loads the five LRU ID fields in the UART1 configuration register. 
Input: LRU_ID 
Output: none 
Notes: The LRU_ID structure contains a NumIDs field that specifies how 
many IDs are to be loaded and an array of five bytes that contains the LRU 
IDs. Only the number of IDs indicated need to be written into the LRU_ID 
struct e.g. if there is only one valid LRU ID, write a one in the NumIDs field 
and enter the LRU ID number in the first position of the IdData array. When 
the IOCTL is executed the driver will automatically fill all the ID fields with 
that ID number. This allows the UART to check from one to five ID numbers 
to determine the state of the ID_ERR bit in the acknowledge packet. See the 
DDPB2_NG1.h header file for more information and the LRU_ID definition. 
 
 

IOCTL_PB2_NG1_LOAD_UART2_LRU_ID 

Function: Loads the five LRU ID fields in the UART2 configuration register. 
Input: LRU_ID 
Output: none 
Notes: The LRU_ID structure contains a NumIDs field that specifies how 
many IDs are to be loaded and an array of five bytes that contains the LRU 
IDs. Only the number of IDs indicated need to be written into the LRU_ID 
struct e.g. if there is only one valid LRU ID, write a one in the NumIDs field 
and enter the LRU ID number in the first position of the IdData array. When 
the IOCTL is executed the driver will automatically fill all the ID fields with 
that ID number. This allows the UART to check from one to five ID numbers 
to determine the state of the ID_ERR bit in the acknowledge packet. See the 
DDPB2_NG1.h header file for more information and the LRU_ID definition. 
 



  Page    22      Electronics Design  •  Manufacturing Services 

Warranty and Repair 
 
Dynamic Engineering warrants this product to be free from defects under 
normal use and service and in its original, unmodified condition, for a period 
of one year from the time of purchase. If the product is found to be 
defective within the terms of this warranty, Dynamic Engineering's sole 
responsibility shall be to repair, or at Dynamic Engineering's sole option to 
replace, the defective product. 
 
Dynamic Engineering's warranty of and liability for defective products is 
limited to that set forth herein. Dynamic Engineering disclaims and excludes 
all other product warranties and product liability, expressed or implied, 
including but not limited to any implied warranties of merchandisability or 
fitness for a particular purpose or use, liability for negligence in 
manufacture or shipment of product, liability for injury to persons or 
property, or for any incidental or consequential damages. 
 
Dynamic Engineering’s products are not authorized for use as critical 
components in life support devices or systems without the express written 
approval of the president of Dynamic Engineering. 



  Page    23      Electronics Design  •  Manufacturing Services   

Service Policy 
 
Before returning a product for repair, verify as well as possible that the 
driver is at fault. The driver has gone through extensive testing and in most 
cases it will be “cockpit error” rather than an error with the driver. When 
you are sure or at least willing to pay to have someone help then call the 
Customer Service Department and arrange to speak with an engineer. We 
will work with you to determine the cause of the issue. If the issue is one of 
a defective driver we will correct the problem and provide an updated 
module(s) to you [no cost]. If the issue is of the customer’s making 
[anything that is not the driver] the engineering time will be invoiced to the 
customer. Pre-approval may be required in some cases depending on the 
customer’s invoicing policy. 
 

Out of Warranty Repairs 
 
Out of warranty support will be billed. The current minimum repair charge is 
$125. An open PO will be required. 
 
 

For Service Contact: 
 
Customer Service Department 
Dynamic Engineering 
435 Park Dr. 
Ben Lomond, CA 95005 
831-336-8891 
831-336-3840 fax 
support@dyneng.com 
 
All information provided is Copyright Dynamic Engineering 


