
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

PmcHLnkBase
&

PmcHLnkChan

WDF Driver Documentation
For the Two-Channel

ccPMC-HOTLink-Kaon1

Developed with Windows Driver Foundation Ver1.9

Manual Revision B
Corresponding Firmware: Design ID 4, Revision B2

Corresponding Hardware: 10-2009-0103

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 17

PmcHLnkBase, PmcHLnkChan
WDF Device Drivers for the
ccPMC-HOTLink-Kaon1 2-Channel
HOTLink® Interface

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2018 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by
their respective manufacturers.
Manual Revision A: Revised September 7, 2018

 Embedded Solutions Page 3 of 17

Table of Contents

Introduction .. 4
Note ... 4
Driver Installation ... 4
Windows 7 Installation .. 5
Driver Startup ... 5
IO Controls ... 6

IOCTL_PMC_HLNK_BASE_GET_INFO .. 6
IOCTL_PMC_HLNK_BASE_LOAD_PLL_DATA ... 7
IOCTL_PMC_HLNK_BASE_READ_PLL_DATA ... 7
IOCTL_PMC_HLNK_BASE_GET_STATUS .. 7
IOCTL_PMC_HLNK_CHAN_GET_INFO .. 8
IOCTL_PMC_HLNK_CHAN_SET_CONFIG ... 8
IOCTL_PMC_HLNK_CHAN_GET_CONFIG .. 9
IOCTL_PMC_HLNK_CHAN_GET_STATUS .. 9
IOCTL_PMC_HLNK_CHAN_SET_FIFO_LEVELS ... 10
IOCTL_PMC_HLNK_CHAN_GET_FIFO_LEVELS .. 10
IOCTL_PMC_HLNK_CHAN_GET_FIFO_COUNTS ... 10
IOCTL_PMC_HLNK_CHAN_RESET_FIFOS ... 11
IOCTL_PMC_HLNK_CHAN_WRITE_FIFO .. 11
IOCTL_PMC_HLNK_CHAN_READ_FIFO ... 11
IOCTL_PMC_HLNK_CHAN_WRITE_RAM .. 11
IOCTL_PMC_HLNK_CHAN_READ_RAM ... 12
IOCTL_PMC_HLNK_CHAN_GET_MSG_COUNTS ... 12
IOCTL_PMC_HLNK_CHAN_SET_TTL_CONFIG .. 12
IOCTL_PMC_HLNK_CHAN_GET_TTL_CONFIG .. 12
IOCTL_PMC_HLNK_CHAN_GET_TTL_STATUS ... 13
IOCTL_PMC_HLNK_CHAN_GET_TTL_FIFO_COUNTS .. 13
IOCTL_PMC_HLNK_CHAN_RESET_TTL_FIFOS ... 14
IOCTL_PMC_HLNK_CHAN_WRITE_TTL_FIFO ... 14
IOCTL_PMC_HLNK_CHAN_READ_TTL_FIFO ... 14
IOCTL_PMC_HLNK_CHAN_REGISTER_EVENT ... 14
IOCTL_PMC_HLNK_CHAN_ENABLE_INTERRUPT .. 15
IOCTL_PMC_HLNK_CHAN_DISABLE_INTERRUPT ... 15
IOCTL_PMC_HLNK_CHAN_FORCE_INTERRUPT ... 15
IOCTL_PMC_HLNK_CHAN_GET_ISR_STATUS .. 15
IOCTL_PMC_HLNK_CHAN_READ_DMA_COUNTS .. 16

Write .. 16
Read .. 16

Warranty and Repair ... 17
Service Policy ... 17

Out of Warranty Repairs .. 17
For Service Contact: .. 17

 Embedded Solutions Page 4 of 17

Introduction

The PmcHLnkBase and PmcHLnkChan drivers are Windows device drivers for the
ccPMC-Two-Channel HOTLink design from Dynamic Engineering. These drivers were
developed with the Windows Driver Foundation version 1.9 (WDF) from Microsoft,
specifically the Kernel-Mode Driver Framework (KMDF).

The HOTLink board has a Xilinx Spartan-6-LX100 FPGA to implement a PCI interface,
FIFOs and protocol control/status for two HOTLink channels. There is a programmable
PLL to create a custom Byte I/O clock of 16.777216 MHz for the HOTLink GDL (Global
Data Link) interface, a 4x clock of 27.525120 MHz for the GCS (Global Clock Sync)
transmitter and a 147.456 MHz sample clock for the GCS receiver. The PCI bus is
using a 33 MHz clock and interfaces with the host PCI bus through a PCI to PMC carrier
board.

Each channel’s GDL has two 32k x 32-bit FIFOs one each for the transmitter and
receiver. These FIFOs can be accessed using either single-word reads / writes or
DMA. Each channel’s GDL also has a 128 x 32-bit RAM block to store format
information for the GDL data-frame. The format RAM is loaded with single word writes
and accessed by both the GDL transmitter and receiver during the transmission and
reception of GDL data.

The GCS has two 4k x 32-bit FIFOs one each for the transmitter and receiver. These
FIFOs are accessible only by single-word writes and reads. All FIFOs and RAM are
implemented using FPGA internal RAM blocks.

When the ccPMC-HOTLink board is recognized by the PCI bus configuration utility it will
load the PmcHLnkBase driver which will create a device object for each board, initialize
the hardware, create child devices for the two I/O channels and request loading of the
PmcHLnkChan driver. The PmcHLnkChan driver will create a device object for each of
the I/O channels and perform initialization on each channel. IO Control calls (IOCTLs)
are used to configure the board and read status. Read and Write calls are used to
move blocks of DMA data in and out of the I/O channel devices.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the ccPMC-HOTLink hardware
manual.

Driver Installation

There are several files provided in each driver package. These files include
PmcHLnkBase.cat, PmcHLnkBase.sys, PmcHLnkBase.inf, PmcHLnkChan.cat,
PmcHLnkChan.sys, PmcHLnkChan.inf, and WdfCoInstaller01009.dll.

 Embedded Solutions Page 5 of 17

PmcHLnkBasePublic.h and PmcHLnkChanPublic.h are C header files that define the
Application Program Interface (API) for the PmcHLnkBase and PmcHLnkChan drivers.
These two files are required at compile time by any application that wishes to interface
with the drivers, but are not needed for driver installation.

Windows 7 Installation

Copy PmcHLnkBase.inf, PmcHLnkBase.cat, PmcHLnkBase.sys, PmcHLnkChan.inf,
PmcHLnkChan.cat, PmcHLnkChan.sys and WdfCoInstaller01009.dll (Win7 version) to a
removable memory device, or another accessible location if preferred.

With the ccPMC-HOTLink hardware installed, power-on the PCI host computer.

 Open the Device Manager from the control panel.

 Under Other devices there should be an Other PCI Bridge Device*.

 Right-click on the Other PCI Bridge Device and select Update Driver Software.

 Insert the removable memory device prepared above if necessary.

 Select Browse my computer for driver software.

 Navigate to the location of the prepared memory device or wherever the specified files
are located.

 Select Next.

 If a dialog box is displayed asking if you are sure that you want to install the driver
Select Yes.

 Select Next.

 Select Close to close the update window. The system should now display the
PmcHLnkChan I/O channels in the Device Manager.

 Right-click on each channel icon, select Update Driver Software and proceed as
above for each channel as necessary.

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware
changes icon on the tool-bar.

Driver Startup

Once the driver has been installed it will start automatically when the system recognizes
the hardware. A handle can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system. The interface to
the device is identified using globally unique identifiers (GUID), which are defined in
PmcHLnkBasePublic.h and PmcHLnkChanPublic.h. See main.c in the example
PmcHOTLinkUserApp project for information about how to acquire handles for the base
and two channel devices.

Note: In order to build an application you must link with setupapi.lib.

 Embedded Solutions Page 6 of 17

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure

); // used for asynchronous I/O

The IOCTLs defined for the PmcHLnkBase driver are described below:

IOCTL_PMC_HLNK_BASE_GET_INFO

Function: Returns the device driver version, design version, design type, user switch value,
device instance number and PLL device ID.
Input: None
Output: PMC_HLNK_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has
been selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See the definition of
PMC_HLNK_BASE_DRIVER_DEVICE_INFO below.

 // Driver/Device information

typedef struct _PMC_HLNK_BASE_DRIVER_DEVICE_INFO {

 UCHAR DriverRev;

 UCHAR DesignId;

 UCHAR DesignRev;

 UCHAR MinorRev;

 UCHAR SwitchValue;

 UCHAR PllDeviceId;

 UCHAR InstanceNum;

} PMC_HLNK_BASE_DRIVER_DEVICE_INFO, *PPMC_HLNK_BASE_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 7 of 17

IOCTL_PMC_HLNK_BASE_LOAD_PLL_DATA

Function: Writes to the internal registers of the PLL.
Input: PMC_HLNK_BASE_PLL_DATA structure
Output: None
Notes: The PLL internal register data is loaded into the PMC_HLNK_BASE_PLL_DATA
structure in an array of 40 bytes. Appropriate values for this array can be derived from
.jed files created by the CyberClock utility from Cypress Semiconductor. See below for
the definition of PMC_HLNK_BASE_PLL_DATA.

#define PLL_MESSAGE1_SIZE 16

#define PLL_MESSAGE2_SIZE 24

#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _PMC_HLNK_BASE_PLL_DATA {

 UCHAR Data[PLL_MESSAGE_SIZE];

} PMC_HLNK_BASE_PLL_DATA, *PPMC_HLNK_BASE_PLL_DATA;

IOCTL_PMC_HLNK_BASE_READ_PLL_DATA

Function: Returns the contents of the internal registers of the PLL.
Input: None
Output: PMC_HLNK_BASE_PLL_DATA structure
Notes: The PLL internal register data is read and inserted into the data structure in an
array of 40 bytes. See the definition of PMC_HLNK_BASE_PLL_DATA above.

IOCTL_PMC_HLNK_BASE_GET_STATUS

Function: Returns the value of the status register and clears any latched bits
Input: None
Output: Status register value (unsigned int)
Notes: Returns the real-time values of the status bits and clears the bits in
BASE_STAT_PLL_LATCH_MASK if they are set.

/* Status bit definitions */

#define BASE_STAT_INT0_ACTV 0x00000001

#define BASE_STAT_INT1_ACTV 0x00000002

#define BASE_STAT_PLLREF_LCKD 0x00000040

#define BASE_STAT_HLCLK_LCKD 0x00000080

#define BASE_STAT_PLL_TX_FF_MT 0x00000100

#define BASE_STAT_PLL_TX_FF_FL 0x00000200

#define BASE_STAT_PLL_TX_FF_VLD 0x00000400

#define BASE_STAT_PLL_RX_FF_MT 0x00001000

#define BASE_STAT_PLL_RX_FF_FL 0x00002000

#define BASE_STAT_PLL_RX_FF_VLD 0x00004000

#define BASE_STAT_PLL_RDY 0x00010000

#define BASE_STAT_PLL_DONE 0x00020000

#define BASE_STAT_PLL_ERROR 0x00040000

#define BASE_STAT_CORE_REV_MASK 0x0FF00000

#define BASE_STAT_PLL_FIFO_MASK (BASE_STAT_PLL_TX_FF_MT | BASE_STAT_PLL_TX_FF_FL | BASE_STAT_PLL_TX_FF_VLD |\

 BASE_STAT_PLL_RX_FF_MT | BASE_STAT_PLL_RX_FF_FL | BASE_STAT_PLL_RX_FF_VLD)

#define BASE_STAT_PLL_LATCH_MASK (BASE_STAT_PLL_DONE | BASE_STAT_PLL_ERROR)

#define BASE_STAT_MASK (BASE_STAT_INT0_ACTV | BASE_STAT_HLCLK_LCKD | BASE_STAT_PLL_FIFO_MASK |\

 BASE_STAT_INT1_ACTV | BASE_STAT_PLLREF_LCKD | BASE_STAT_PLL_LATCH_MASK |\

 BASE_STAT_PLL_RDY | BASE_STAT_CORE_REV_MASK)

 Embedded Solutions Page 8 of 17

The IOCTLs defined for the PmcHLnkChan driver are described below:

IOCTL_PMC_HLNK_CHAN_GET_INFO

Function: Returns the channel number driver revision as well as the board instance number,
design ID, design revision and minor revision passed in from the base driver.
Input: None
Output: PMC_HLNK_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of PMC_HLNK_CHAN_DRIVER_DEVICE_INFO below.

/* Driver/Device information */

typedef struct _HLNK_CHAN_DRIVER_DEVICE_INFO {

 unsigned char DriverRev; // Channel driver revision

 unsigned int InstanceNum; // Board instance number from base driver

 unsigned char Channel; // Channel number

 unsigned char DesignId; // From base driver

 unsigned char DesignRev; // From base driver

 unsigned char MinorRev; // From base driver

} HLNK_CHAN_DRIVER_DEVICE_INFO, *PHLNK_CHAN_DRIVER_DEVICE_INFO;

IOCTL_PMC_HLNK_CHAN_SET_CONFIG

Function: Sets the requested channel control configuration.
Input: PMC_HLNK_CHAN_CONFIG structure
Output: None
Notes: See below for the definitions of the structures used in this call.

typedef struct _PMC_HLNK_CHAN_INTS {

 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt

 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt

 BOOLEAN RxOvflInt; // Receive FIFO overflow interrupt

} PMC_HLNK_CHAN_INTS, *PPMC_HLNK_CHAN_INTS;

 // Channel DMA priority (use sparingly)

typedef enum _PMC_HLNK_DMA_PRMPT {

 PMC_HLNK_NONE, // No priority

 PMC_HLNK_READ, // Read DMA has priority

 PMC_HLNK_WRITE, // Write DMA has priority

 PMC_HLNK_RDWR // Read and Write DMA have priority

} PMC_HLNK_DMA_PRMPT, *PPMC_HLNK_DMA_PRMPT;

 /* Channel Configuration */

typedef struct _PMC_HLNK_CHAN_CONFIG {

 BOOLEAN TxEnable; // Enable HOTLink transmitter

 BOOLEAN RxEnable; // Enable HOTLink receiver

 BOOLEAN FifoTestEn; // Enables auto tx->rx FIFO transfer

 BOOLEAN IoTestEn; // Enables tx->rx I/O data transfer

 BOOLEAN TxOutEn; // Enable transmitter output

 BOOLEAN TxBitEn; // Built-in-test enable (sends test pattern)

 BOOLEAN TxLdEn; // Enables loading of test data

 BOOLEAN TxSndFrm; // Forces sending a data-frame without trigger

 BOOLEAN TtlCmndEn; // Enables TTL I/F to trigger sending a data-frame

 BOOLEAN RxInASel; // Selects rx input '1'=External, '0'=Local Tx

 BOOLEAN RxBitEn; // Built-in-test enable (verifies test pattern)

 BOOLEAN RxReframe; // Manually initiate receiver data reframe

 BOOLEAN ForceRfrm; // Force reframe signal high

 PMC_HLNK_CHAN_INTS IntConfig; // Interrupt condition enables

 PMC_HLNK_DMA_PRMPT DmaPriority;// DMA preemption control

} PMC_HLNK_CHAN_CONFIG, *PPMC_HLNK_CHAN_CONFIG;

 Embedded Solutions Page 9 of 17

IOCTL_PMC_HLNK_CHAN_GET_CONFIG

Function: Returns the channel’s control configuration.
Input: None
Output: PMC_HLNK_CHAN_CONFIG structure
Notes: Returns the parameter values written in the previous call.

IOCTL_PMC_HLNK_CHAN_GET_STATUS

Function: Returns the channel’s status register value and clears the latched status bits.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: The latched bits in CHAN_STAT_LATCH_MASK will be cleared only if they are
set when the status is read.

/* Status bit definitions */

#define CHAN_STAT_TX_FF_MT 0x00000001

#define CHAN_STAT_TX_FF_AMT 0x00000002

#define CHAN_STAT_TX_FF_FL 0x00000004

#define CHAN_STAT_TX_FF_VLD 0x00000008

#define CHAN_STAT_RX_FF_MT 0x00000010

#define CHAN_STAT_RX_FF_AFL 0x00000020

#define CHAN_STAT_RX_FF_FL 0x00000040

#define CHAN_STAT_RX_FF_VLD 0x00000080

#define CHAN_STAT_TX_AMT_INT 0x00000100

#define CHAN_STAT_RX_AFL_INT 0x00000200

#define CHAN_STAT_RX_OVFL 0x00000400

#define CHAN_STAT_RX_SYM_ERR 0x00000800

#define CHAN_STAT_WR_DMA_INT 0x00001000

#define CHAN_STAT_RD_DMA_INT 0x00002000

#define CHAN_STAT_WR_DMA_ERR 0x00004000

#define CHAN_STAT_RD_DMA_ERR 0x00008000

#define CHAN_STAT_WR_DMA_RDY 0x00010000

#define CHAN_STAT_RD_DMA_RDY 0x00020000

#define CHAN_STAT_RX_DATA_RDY 0x00040000

#define CHAN_STAT_TX_DATA_READ 0x00080000

#define CHAN_STAT_TX_UNDRN_ERR 0x00100000

#define CHAN_STAT_TX_COUNT_ERR 0x00200000

#define CHAN_STAT_RX_FRAME_ERR 0x00400000

#define CHAN_STAT_RX_COUNT_ERR 0x00800000

#define CHAN_STAT_TX_FRAME_DN 0x01000000

#define CHAN_STAT_RX_FRAME_DN 0x02000000

#define CHAN_STAT_RX_ACTIVE 0x04000000

#define CHAN_STAT_RX_SYNCHED 0x08000000

#define CHAN_STAT_RX_UDEF_CHAR 0x10000000

#define CHAN_STAT_RX_DISP_ERR 0x20000000

#define CHAN_STAT_LOC_INT 0x40000000

#define CHAN_STAT_INT_ACTIVE 0x80000000

#define CHAN_STAT_FIFO_MASK (CHAN_STAT_TX_FF_MT | CHAN_STAT_TX_FF_FL | CHAN_STAT_TX_FF_AMT |\

 CHAN_STAT_TX_FF_VLD | CHAN_STAT_RX_FF_MT | CHAN_STAT_RX_FF_AFL |\

 CHAN_STAT_RX_FF_VLD | CHAN_STAT_RX_FF_FL)

#define CHAN_STAT_LATCH_MASK (CHAN_STAT_RD_DMA_ERR | CHAN_STAT_TX_FRAME_DN | CHAN_STAT_TX_UNDRN_ERR |\

 CHAN_STAT_WR_DMA_ERR | CHAN_STAT_RX_FRAME_DN | CHAN_STAT_TX_COUNT_ERR |\

 CHAN_STAT_RX_SYM_ERR | CHAN_STAT_RX_DATA_RDY | CHAN_STAT_RX_FRAME_ERR |\

 CHAN_STAT_RX_AFL_INT | CHAN_STAT_TX_DATA_READ | CHAN_STAT_RX_COUNT_ERR |\

 CHAN_STAT_TX_AMT_INT | CHAN_STAT_RX_UDEF_CHAR | CHAN_STAT_RX_DISP_ERR |\

 CHAN_STAT_RX_OVFL)

#define CHAN_STAT_MASK (CHAN_STAT_WR_DMA_INT | CHAN_STAT_WR_DMA_RDY | CHAN_STAT_LOC_INT |\

 CHAN_STAT_RD_DMA_INT | CHAN_STAT_RD_DMA_RDY | CHAN_STAT_FIFO_MASK |\

 CHAN_STAT_RX_SYNCHED | CHAN_STAT_LATCH_MASK | CHAN_STAT_RX_ACTIVE |\

 CHAN_STAT_INT_ACTIVE)

 Embedded Solutions Page 10 of 17

IOCTL_PMC_HLNK_CHAN_SET_FIFO_LEVELS

Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: PMC_HLNK_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are set to the default values ⅛ FIFO and ⅞ FIFO respectively
when the driver initializes. The FIFO counts are compared to these levels to set the
value of the CHAN_STAT_TX_FF_AMT and CHAN_STAT_RX_FF_AFL status bits.
Also, if read and/or write DMA priority is selected, these levels are used to determine at
what point DMA preemption for an input or output DMA channel will take effect. See the
definition of PMC_HLNK_CHAN_FIFO_LEVELS below.

typedef struct _PMC_HLNK_CHAN_FIFO_LEVELS {

 ULONG AlmostFull;

 ULONG AlmostEmpty;

} PMC_HLNK_CHAN_FIFO_LEVELS, *PPMC_HLNK_CHAN_FIFO_LEVELS;

IOCTL_PMC_HLNK_CHAN_GET_FIFO_LEVELS

Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: PMC_HLNK_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call.

IOCTL_PMC_HLNK_CHAN_GET_FIFO_COUNTS

Function: Returns the number of data words in the transmit and receive data FIFOs.
Input: None
Output: PMC_HLNK_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmit FIFO data and four for the receive
FIFO data. These are counted in the FIFO counts. That means the transmit count can
be a maximum of 32,769 32-bit words and the receive count can be a maximum of
32,772 32-bit words.

typedef struct _PMC_HLNK_CHAN_FIFO_COUNTS {

 ULONG TxCount;

 ULONG RxCount;

} PMC_HLNK_CHAN_FIFO_COUNTS, *PPMC_HLNK_CHAN_FIFO_COUNTS;

 Embedded Solutions Page 11 of 17

IOCTL_PMC_HLNK_CHAN_RESET_FIFOS

Function: Resets one or both FIFOs for the referenced channel.
Input: PMC_HLNK_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmitter or receiver FIFO or both depending on the input
parameter selection. See the definition of PMC_HLNK_CHAN_FIFO_SEL below.

 // Used for FIFO reset call

typedef enum _PMC_HLNK_CHAN_FIFO_SEL {

 PMC_HLNK_TX,

 PMC_HLNK_RX,

 PMC_HLNK_BOTH

} PMC_HLNK_CHAN_FIFO_SEL, *PPMC_HLNK_CHAN_FIFO_SEL;

IOCTL_PMC_HLNK_CHAN_WRITE_FIFO

Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_PMC_HLNK_CHAN_READ_FIFO

Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_PMC_HLNK_CHAN_WRITE_RAM

Function: Writes a 32-bit data-word to the format RAM.
Input: PMC_HLNK_CHAN_MEM_WORD_WRITE structure
Output: None
Notes: Used to write data-frame format information to the format RAM.

typedef struct _PMC_HLNK_CHAN_MEM_WORD_WRITE {

 unsigned int Address;

 unsigned int Data;

} PMC_HLNK_CHAN_MEM_WORD_WRITE, *PPMC_HLNK_CHAN_MEM_WORD_WRITE;

 Embedded Solutions Page 12 of 17

IOCTL_PMC_HLNK_CHAN_READ_RAM

Function: Reads a 32-bit frame format word from the format RAM.
Input: RAM word address (unsigned character)
Output: RAM format word (unsigned integer)
Notes: This call is used to test the RAM. In normal operation the format RAM is only
read by the transmitter and receiver state-machines

IOCTL_PMC_HLNK_CHAN_GET_MSG_COUNTS

Function: Reads and returns the byte counts from the last message sent/received.
Input: None
Output: PMC_HLNK_CHAN_MSG_COUNTS
Notes: See the definition of PMC_HLNK_CHAN_MSG_COUNTS below.

typedef struct _PMC_HLNK_CHAN_MSG_COUNTS {

 unsigned int TxMsgCount;

 unsigned int RxMsgCount;

} PMC_HLNK_CHAN_MSG_COUNTS, *PPMC_HLNK_CHAN_MSG_COUNTS;

IOCTL_PMC_HLNK_CHAN_SET_TTL_CONFIG

Function: Writes the channel TTL configuration parameters.
Input: PMC_HLNK_CHAN_TTL_CONFIG structure
Output: None
Notes: See the definition of PMC_HLNK_CHAN_TTL_CONFIG below.

typedef struct _PMC_HLNK_CHAN_TTL_CONFIG {

 BOOLEAN RxTtlEn; // Receive TTL data

 BOOLEAN TxTtlEn; // Load and send TTL data

 BOOLEAN TtlFifoTestEn; // Enables auto tx->rx FIFO transfer

 BOOLEAN TtlRxDnIntEn; // Enables the receiver frame done interrupt

} PMC_HLNK_CHAN_TTL_CONFIG, *PPMC_HLNK_CHAN_TTL_CONFIG;

IOCTL_PMC_HLNK_CHAN_GET_TTL_CONFIG

Function: Returns the channel’s TTL control configuration.
Input: None
Output: PMC_HLNK_CHAN_TTL_CONFIG structure
Notes: Returns the values set in the previous call. See the definition of
PMC_HLNK_CHAN_TTL_CONFIG above.

 Embedded Solutions Page 13 of 17

IOCTL_PMC_HLNK_CHAN_GET_TTL_STATUS

Function: Returns the channel’s TTL status register value.
Input: None
Output: Value of channel TTL status register (unsigned integer)
Notes: The bits in CHAN_TTL_STAT_LAT_MASK will be cleared, if they are set when
this call is made.

#define CHAN_TTL_STAT_TX_FF_MT 0x00000001

#define CHAN_TTL_STAT_TX_FF_AMT 0x00000002

#define CHAN_TTL_STAT_TX_FF_FL 0x00000004

#define CHAN_TTL_STAT_TX_FF_VLD 0x00000008

#define CHAN_TTL_STAT_RX_FF_MT 0x00000010

#define CHAN_TTL_STAT_RX_FF_AFL 0x00000020

#define CHAN_TTL_STAT_RX_FF_FL 0x00000040

#define CHAN_TTL_STAT_RX_FF_VLD 0x00000080

#define CHAN_TTL_STAT_RX_BIT_ERR 0x00000100

#define CHAN_TTL_STAT_RX_FF_OVFL 0x00000200

#define CHAN_TTL_STAT_RX_DONE 0x00000400

#define CHAN_TTL_STAT_RX_TRIG_ERR 0x00000800

#define CHAN_TTL_STAT_TX_FF_MASK (CHAN_TTL_STAT_TX_FF_FL | CHAN_TTL_STAT_TX_FF_VLD | CHAN_TTL_STAT_TX_FF_MT |\

 CHAN_TTL_STAT_TX_FF_AMT)

#define CHAN_TTL_STAT_RX_FF_MASK (CHAN_TTL_STAT_RX_FF_FL | CHAN_TTL_STAT_RX_FF_VLD | CHAN_TTL_STAT_RX_FF_MT |\

 CHAN_TTL_STAT_RX_FF_AFL)

#define CHAN_TTL_STAT_FF_MASK (CHAN_TTL_STAT_TX_FF_MASK | CHAN_TTL_STAT_RX_FF_MASK)

#define CHAN_TTL_STAT_LAT_MASK (CHAN_TTL_STAT_RX_BIT_ERR | CHAN_TTL_STAT_RX_DONE |\

 CHAN_TTL_STAT_RX_FF_OVFL | CHAN_TTL_STAT_RX_TRIG_ERR)

#define CHAN_TTL_STAT_MASK (CHAN_TTL_STAT_FF_MASK | CHAN_TTL_STAT_LAT_MASK)

IOCTL_PMC_HLNK_CHAN_GET_TTL_FIFO_COUNTS

Function: Returns the number of data words in the transmitter and receiver TTL FIFOs.
Input: None
Output: PMC_HLNK_CHAN_FIFO_COUNTS structure
Notes: There is one pipe-line latch for the transmitter and receiver FIFO. These are
counted in the FIFO counts. That means the transmitter and receiver count can be a
maximum of 4097 32-bit words.

 /* FIFO word counts */

typedef struct _PMC_HLNK_CHAN_FIFO_COUNTS {

 unsigned int TxCount;

 unsigned int RxCount;

} PMC_HLNK_CHAN_FIFO_COUNTS, *PPMC_HLNK_CHAN_FIFO_COUNTS;

 Embedded Solutions Page 14 of 17

IOCTL_PMC_HLNK_CHAN_RESET_TTL_FIFOS

Function: Resets one or both TTL FIFOs for the channel.
Input: PMC_HLNK_CHAN_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmitter or receiver TTL FIFO or both depending on the input
parameter selection.

 /* FIFO select (used by FIFO reset) */

typedef enum _PMC_HLNK_CHAN_FIFO_SEL {

 PMC_HLNK_TX,

 PMC_HLNK_RX,

 PMC_HLNK_BOTH

} PMC_HLNK_CHAN_FIFO_SEL, *PPMC_HLNK_CHAN_FIFO_SEL;

IOCTL_PMC_HLNK_CHAN_WRITE_TTL_FIFO

Function: Writes a 32-bit data-word to the transmitter TTL FIFO.
Input: FIFO word (unsigned integer)
Output: None
Notes: Used to write data to the transmitter TTL FIFO.

IOCTL_PMC_HLNK_CHAN_READ_TTL_FIFO

Function: Reads and returns a 32-bit data word from the receiver TTL FIFO.
Input: None
Output: FIFO word (unsigned integer)
Notes: Used to read data from the receiver TTL FIFO.

IOCTL_PMC_HLNK_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause this event to be signaled.

 Embedded Solutions Page 15 of 17

IOCTL_PMC_HLNK_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each user
interrupt occurs to re-enable it.

IOCTL_PMC_HLNK_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_PMC_HLNK_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_PMC_HLNK_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the status that was read while servicing the last interrupt caused by one
of the user-enabled channel interrupt conditions. The interrupts that deal with the DMA
transfers do not affect this value. The new field is true if the stored ISR status has been
updated since the last time this call was made. See below for the definition of
PMC_HLNK_CHAN_ISR_STATUS.

 /* Interrupt status from ISR */

typedef struct _PMC_HLNK_CHAN_ISR_STAT {

 unsigned int HlStat; // HOTLink status read in the ISR

 unsigned int TtlStat; // TTL staus read in the ISR

 BOOLEAN HlNew; // True if status has changed since the last get ISR status call

 BOOLEAN TtlNew; // True if TTL status has changed since the last get ISR status call

 BOOLEAN TimedOut; // True if interrupt wait time was exceeded

} PMC_HLNK_CHAN_ISR_STAT, *PPMC_HLNK_CHAN_ISR_STAT;

 Embedded Solutions Page 16 of 17

IOCTL_PMC_HLNK_CHAN_READ_DMA_COUNTS

Function: Returns the number of words transferred in the last input and output DMA.
Input: None
Output: PMC_HLNK_CHAN_DMA_COUNTS
Notes: This count will remain valid even if the board is reset. This allows the user to
get information about a DMA transfer that was hung or failed to complete.

typedef struct _PMC_HLNK_CHAN_DMA_COUNTS {

 unsigned int WriteCount;

 unsigned int ReadCount;

} PMC_HLNK_CHAN_DMA_COUNTS, *PPMC_HLNK_CHAN_DMA_COUNTS;

Write

HOTLink DMA data is written to the referenced I/O channel device using the write
command. Writes are executed using the Win32 function WriteFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer containing the data to be written, an unsigned long integer that represents the
size of that buffer in bytes, a pointer to an unsigned long integer to contain the number
of bytes actually written, and a pointer to an optional Overlapped structure for
performing asynchronous IO.

Read

HOTLink DMA data is read from the referenced I/O channel device using the read
command. Reads are executed using the Win32 function ReadFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer that will contain the data read, an unsigned long integer that represents the size
of that buffer in bytes, a pointer to an unsigned long integer to contain the number of
bytes actually read, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

 Embedded Solutions Page 17 of 17

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under normal use
and service and in its original, unmodified condition, for a period of one year from the
time of purchase. If the product is found to be defective within the terms of this
warranty, Dynamic Engineering's sole responsibility shall be to repair, or at Dynamic
Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to that
set forth herein. Dynamic Engineering disclaims and excludes all other product
warranties and product liability, expressed or implied, including but not limited to any
implied warranties of merchantability or fitness for a particular purpose or use, liability
for negligence in manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

mailto:support@dyneng.com

