
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

(831) 457-8891 Fax (831) 457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

User Manual

PMC-BiSerial UART Hardware
Manual

8-Channel UART Interface

Manual Revision A

Corresponding Hardware: 10-2005-0205

 Embedded Solutions Page 2 of 44

PMC-Biserial-UART

8-Channel UART Interface

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right
to make improvements or changes in the
product described in this document at any time
and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2015 by Dynamic Engineering.
Other trademarks and registered trademarks are
owned by their respective manufacturers.
Manual Revised 3/9/2015

 Embedded Solutions Page 3 of 44

PRODUCT DESCRIPTION 6	

THEORY OF OPERATION 10	

PROGRAMMING 12	

Base Address Map 14	

UART Channel Address Map 14	

Channel Offsets 15	

Register Definitions 16	

BASE_REG 16	

BASE_GP 17	

BASE_INT 18	

UART_CHAN_CONT 19	

UART_CHAN_STAT 24	

CHAN_UART_FIFO 27	

CHAN_FRAME_TIME 28	

CHAN_BAUD_RATE 29	

UART_CHAN_CONTB 30	

CHAN_FIFO_LVL 32	

CHAN_PACKET_FIFO 33	

CHAN_RX_FIFO_CNT 34	

CHAN_TX_FIFO_CNT 34	

LOOP-BACK & IO CONNECTION DEFINITIONS 35	

PMC PCI PN1 INTERFACE PIN ASSIGNMENT 36	

PMC PCI PN2 INTERFACE PIN ASSIGNMENT 37	

APPLICATIONS GUIDE 38	

Interfacing 38	

CONSTRUCTION AND RELIABILITY 39	

Table of Contents

 Embedded Solutions Page 4 of 44

THERMAL CONSIDERATIONS 40	

WARRANTY AND REPAIR 40	

Service Policy 40	

Out of Warranty Repairs 40	

For Service Contact: 40	

SPECIFICATIONS 41	

ORDER INFORMATION 42	

GLOSSARY 43	

 Embedded Solutions Page 5 of 44

FIGURE 1	
 PMC-BISERIAL-UART BLOCK DIAGRAM 7	

FIGURE 2	
 UART TRANSFER ENCODING 10	

FIGURE 3	
 PMC-BISERIAL-UART BASE ADDRESS MAP 14	

FIGURE 4	
 PMC-BISERIAL-UART UART CHANNEL ADDRESS MAP 14	

FIGURE 5	
 PMC-BISERIAL-UART CHANNEL OFFSETS 15	

FIGURE 6	
 PMC-BISERIAL-UART BASE CONTROL REGISTER 16	

FIGURE 7	
 PMC-BISERIAL-UART BASE GP REGISTER 17	

FIGURE 8	
 PMC-BISERIAL-UART BASE INTERRUPT STATUS 18	

FIGURE 9	
 PMC-BISERIAL-UART UART CHAN CONTROL 19	

FIGURE 10	
 PMC-BISERIAL-UART UART CHAN CONTROL 24	

FIGURE 11	
 PMC-BISERIAL-UART UART FIFO 27	

FIGURE 12	
 PMC-BISERIAL-UART FRAME TIME 28	

FIGURE 13	
 PMC-BISERIAL-UART BAUD RATE 29	

FIGURE 14	
 PMC-BISERIAL-UART UART CHANB CONTROL 30	

FIGURE 15	
 PMC-BISERIAL-UART FIFO LEVELS 32	

FIGURE 16	
 PMC-BISERIAL-UART PACKET FIFO 33	

FIGURE 17	
 PMC-BISERIAL-UART RX FIFO COUNTS 34	

FIGURE 18	
 PMC-BISERIAL-UART TX FIFO COUNTS 34	

FIGURE 19	
 PMC-BISERIAL-UART PN1 INTERFACE 36	

FIGURE 20	
 PMC-BISERIAL-UART PN2 INTERFACE 37	

List of Figures

 Embedded Solutions Page 6 of 44

Product Description
PMC-BISERIAL-UART is part of the Dynamic Engineering family of modular I/O. PMC-
BISERIAL-UART is a PMC with options for bezel and rear IO, up to 2 MHz signaling,
multiple modes of operation, 1K byte of storage per Tx or Rx node. Currently 8
channels per PMC are provided.

PMC-BISERIAL-UART uses a 10 mm inter-board spacing for the front panel, standoffs,
and PMC connectors. The 10 mm height is the "standard" height and will work in most
systems with most carriers. If your carrier has non-standard connectors (height) to
mate with PMC-BISERIAL-UART, please let us know. We may be able to do a special
build with a different height connector to compensate.

Feature Table:
1. 255x32 FIFO’s for Rx and Tx data storage per channel
2. 255x16 FIFO’s for Packet definitions Rx and Tx
3. 3 operating modes, 32 bit packed, 8 bit unpacked, and packetized
4. 8 position Switch
5. VxWorks driver and reference software. Linux and Windows by request.
6. Industrial temperature components [-40 ó +85C]
7. Standard baud rates and non-standard baud rates programmable based on a 32
MHz reference. 2M Tx and Rx max rate.

 Embedded Solutions Page 7 of 44

The following diagram shows the PMC-BISERIAL-UART configuration:

FIGURE 1 PMC-BISERIAL-UART BLOCK DIAGRAM

Please note: The Packet FIFO’s provide an additional 256 x 16 per channel per
direction [2xN] to store packet sizes for transmission or definitions from reception.

If you can use the BiSerial hardware but need an alternate protocol please contact
Dynamic Engineering. We will redesign the state machines and create a custom
interface protocol. That protocol will then be offered as a “standard” special order
product. Please see our web page for current protocols offered. Please contact
Dynamic Engineering with your custom application.

The UART protocol implemented provides RS422 data inputs and outputs. The
transceivers have supporting programmable terminations to allow for in cable and on-
board termination situations. The receivers are open cable safe – marking state is
detected when undriven.

Baud rates are programmed for each transmitter and receiver separately. The design
uses a distributed enable concept to allow all channels to be referenced to the master
32 MHz clock and be programmed to unique counts.

The transmitter has a pulse generator that puts out 1 clock period per programmed
count. The state-machine is referenced to the master clock and sequences when the
pulsed enable is present. This allows all transmit UART’s to use the same reference
clock and results in much better timing within the FPGA with limited clock resources.

Rx data is asynchronous and potentially noisy. Rx data is synchronized and filtered

RS-485 buffers
termination

PCI IF

Data Flow
Control

PLL

TX FIFO
 255 x 32

TX State
Machines

RX FIFO
 255 x 32

RX State
Machines

xN xN

xN xN

 Embedded Solutions Page 8 of 44

with the master reference clock before being presented to the UART decoder. Within
the UART, data is sampled and checked for being in the marking state before looking
for the first start bit.

Transitions are detected and used to update the reference count. When transitions are
not detected; the reference count and programmed baud rate [expected count] are used
to determine when to capture bits. The receiver uses the programmed count to
determine when to sample the data received. The transition detections are filtered to
only be applicable within 1/8th of the expected transition. The receiver can handle quite
a lot of jitter in this manner. Depending on the data [number of transitions] up to +/-
1/8th bit period per bit cell (with a transition).

Each PMC-BISERIAL-UART channel is supported by two 255 by 32-bit FIFO’s. The TX
FIFO supports long-word writes, and the RX FIFO supports long-word reads. A FIFO
test bit in each channel control register enables the data to be routed from the TX to the
RX FIFO for loop-back testing of the FIFO’s. The FIFO’s are used for packed,
unpacked, and packetized modes of operation.

In packed mode 32 bit data is assumed, 4 bytes per LW to transmit or receive. Bytes
are sent/received 0,1,2,3 with byte 0 being the data bits 7-0 on the PCI bus. 1/4 of the
reads and/or writes are needed in this mode compared to unpacked.

Unpacked mode operates more like a traditional byte wide UART. Only Byte 0 is used
for each LW read / written to the FIFO’s. Effectively a 255 byte FIFO for TX and RX in
this mode compared to 1020 bytes possible in packed mode.

With both packed and unpacked modes, if the UART is enabled the data is sent and
received on demand. As soon as there is data in the output FIFO it is transmitted. If
the FIFO becomes empty the transmitter waits in the marking state until more data is
ready to send. Similarly the receiver writes data as it comes in without any concept of
a frame or packet.

In packetized mode the transmitter waits for the packet descriptor FIFO [255x16] to
have at least one descriptor loaded. As data for the packet becomes available it is
transmitted. Any number of bytes can be sent in this mode. Data is packed with the
possible exception of the last LW in a packet. 1,2,3, or 4 bytes can be sent from the
last LW read for a particular packet. The next packet will start on the next LW
boundary. Packets can be stacked in memory and unloaded as described [just multiple
times]. In addition the inter-packet timer can be utilized to add delay between
consecutive packets.

 Embedded Solutions Page 9 of 44

The receiver uses a programmable timeout to determine the end of the packet. It is
suggested to use the equivalent time to 2 characters modified as needed for the inter-
character gap you expect in your system. Data being received is stored locally and
built into a LW to write to the Rx FIFO. When an inter-character gap exceeds the
programmed delay the accumulation stops and the data captured is written to the FIFO.
In addition, data is written to the FIFO when a complete LW is available. When the end
of packet is detected the packet length and packet status are written to the Rx Packet
FIFO. The accumulated status is written along with the length to allow multiple
packets to be stored and accurate status per packet to be available.

Interrupts can be programmed from a variety of sources. The FIFO’s have counts and
comparators to allow almost full and almost empty situations to cause interrupts. In
addition an interrupt is available for packet transmitted, packet received, and various
error conditions. All interrupts are individually maskable, and a channel master
interrupt enable is provided to disable all interrupts on a channel simultaneously. The
current real-time status is also available from the FIFO’s making it possible to operate in
a polled mode.

When using internal loop-back the Almost Full and Almost Empty counts should be set
to x10 or more from the end of the FIFO.

More on byte alignment: Transmit bytes are read from byte positions 0->3 byte lane
wise [7-0] first, [15-8] second, [23-16] third and [31-24] last and the bytes are
transmitted in this order. For message byte-counts not divisible by four, the last long-
word is read as described. Any unused bytes are considered padding with the next
message starting with the next FIFO long-word. For example, with 7 bytes to send, a
word of 4 bytes will be read, then the lower 3 bytes will be read and sent and the 8th
byte will be dropped.

In the receive direction the action is similar. Bytes are written as long-words to the RX
FIFO. The first byte received is loaded into long-word byte 0 [7-0], then byte 1 [15-8],
byte 2 [23-16] and byte 3 [31-24]. Whenever a message does not have a complete
long-word to load and the end-of-packet character is received, zero-padding of the
unused upper-bytes will occur before the long-word is written to the FIFO.

Dynamic Engineering offers drivers and reference software for Windows®, Linux, and
VxWorks. Drivers and reference SW are available AS-IS to clients of the PMC-
BISERIAL-UART. Support contracts are encouraged to help with integration and
enhancements. www.dyneng.com/TechnicalSupportFromDE.pdf

 Embedded Solutions Page 10 of 44

Theory of Operation
PMC-BISERIAL-UART provides UART’s for transferring data from one point to another
using the standard UART transfer protocol.

While UART’s are mature devices, enhancements will necessitate updates over time.
PMC-BISERIAL-UART features the ability to reprogram the FPGA storage FLASH to
allow updates via software. A programming adapter is required to use this feature on
this HW set.

A logic block within the Xilinx controls the PCI interface to the host CPU. PMC-
BISERIAL-UART design requires one wait state for read or writes cycles to any
address. The wait states refer to the number of clocks after the PCI-core decode before
the “terminate with data” state is reached. Two additional clock periods account for the
1 clock delay to decode the signals from the PCI bus and to convert the terminate-with-
data state into the TRDY signal.

There are multiple UART’s each with separate Receiver and Transmitter. Each pair is
organized into a Channel within the FPGA. Frequency of operation [Baud rate], mode
of operation, Parity, Stop bits, interrupt conditions are all programmable on a channel
basis.

Each channel has separate state-machines to control the Transmit and Receive
operation. The Tx state-machine uses the programmed values to regulate the transfer
of data from the transmit storage FIFO and transmit packet FIFO to the Tx line. The Rx
state-machine uses the programmed values to regulate the transfer of data from the line
to the receive storage FIFO and to store descriptors into the Rx packet FIFO.

FIGURE 2 UART TRANSFER ENCODING

M
arking

S
tart

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7/P

/M

P
/M

M
arking

 Embedded Solutions Page 11 of 44

The Transmit state-machine will transmit a high level followed by the first falling edge of
the transmission. The falling edge is the leading edge of the start bit. The start bit is 1
period wide and followed by the first data bit [LSB] of the byte being transmitted. D1-
D6 follow. If the UART is programmed for 8 bit data the next period is D7. If
programmed for 7 bit data the next position can be Parity if that is enabled or the
marking state. The shortest transfer of a byte is 7 bit data, no parity and 1 stop bit for a
total of 1[start]+7[data]+1[stop] = 9 bits. If 8 bit data is selected and parity is enabled
the length becomes 1+8+1+1 = 11 bits. If 2 stop bits are selected an extra clock
period is inserted between byte transfers.

The receiver does not have a clock to work with and uses over-sampling to detect the
transitions and the programmed expected transfer rate to count into the bit periods to
determine the bit value. The receiver also checks the expected termination values are
present – for example a framing error is detected if the received signal is low when
marking is expected.

Parity can be programmed to be odd, even or level. When odd the parity bit is
set/cleared to make the number of 1’s odd. For example if the data is “AA” an even
number of bits are set in the data so the parity would be set “0 01010101 1 1” would be
the string with start, data, parity and stop shown. Please note the lsb first nature of the
data. The spaces are added for clarity. For even parity the reverse is true, with parity
set/cleared to make the total of the data and parity fields an even count.

In addition to the framing and parity errors, FIFO over-run is flagged. When the Rx
FIFO is full and a write is attempted the error is captured. A full FIFO will not accept
the new write so that data is lost.

Break characters are detected by the RX state-machine and prioritized in terms of
status. Status is determined Break, Frame, Parity with only one type of error or
condition reported per incident. Interrupts can be generated from the occurrence.

When Break or Frame is detected the receiver resynchronizes before looking for new
characters. With parity errors the error is flagged and processing continues without
resynchronization.

Over reading the Rx FIFO is not an error condition. The FIFO will continue to provide
the last read data multiple times. The FIFO count should be read prior to doing read
multiple commands to prevent under-run.

On the Tx side an empty FIFO causes the transmitter to go to the marking state once
the last word read has been transmitted. When more data is available that data will be
transmitted. No under-run error is generated for this situation.

 Embedded Solutions Page 12 of 44

Programming
Programming PMC-BISERIAL-UART board requires only the ability to read and write
data from the host. The base address is determined during system configuration of the
PCI bus. The base address refers to the first user address for the slot in which the
board is installed. The VendorId = 0xDCBA. The CardId = 0x0057.

In order to transfer data to another UART, several steps must be performed. First a
physical connection must be established with the appropriate interface cable. Then the
Channel of interest must be programmed with the appropriate UART parameters for
transmit and or receive operations. Each channel has a separate register set for
control bits, baud rate and other parameters. Once programmed you can load data into
the Tx buffer for transmission or read from the Rx when data becomes available.

Be sure to select the correct mode of operation, and note the Rx and Tx do not need to
be the same.

The hardware supports several modes of operation. Choose the right mode based on
your environment. For example if you are operating with a console program and need
to remain compatible with other standard UART’s the 8bit [unpacked] mode will be the
right choice. 3/4 of the FIFO is lost and still provides 512 bytes for both Rx and Tx.

If you need more performance and can do some adaptation the Packet or Packed
modes are very useful. The Packed mode is easy to use but requires byte counts that
are multiples of 4. Packet mode is the best of both with almost complete FIFO
utilization and the ability to send non-LW boundary message lengths. Packet mode
Packets can be stored ahead and transmitted based on the packet descriptor being
written or pre-loaded and sent out as the HW becomes ready. Packet received and
packet transmitted interrupts are available to help optimize operation.

The reference software has examples of using all three modes of operation.

The baud rate is programmable and should be set to a value close to the value
expected. The jitter tolerance will allow slightly off frequencies to work, but will
effectively have no jitter tolerance when operating in this manner. The baud rate is
programmable directly based on the reference frequency allowing 1 part in 32 x106.
With the RS485 IO the maximum rate tested is 2M.

 Embedded Solutions Page 13 of 44

Firmware Updates

Revision A1: First release. See feature table for new features.

 Embedded Solutions Page 14 of 44

Base Address Map

Register Name Offset Description

#define BASE_REG 0x0000 //0 485 IO control, JTAG programming control
#define BASE_GP 0x0004 //1 Switch, programming errors, Aux boards

present, revision
#define BASE_INT 0x0008 //2 Interrupt Status

FIGURE 3 PMC-BISERIAL-UART BASE ADDRESS MAP

UART Channel Address Map

Register Name Offset Description

#define CHAN_CNTL 0x0000 //0 UART Channel Control Bits R/W
#define CHAN_STAT 0x0004 //1 UART Channel Status Bits Read /write to clear
#define CHAN_TX_UART_FIFO 0x0008 //2 UART Channel Write to TX UART FIFO
#define CHAN_RX_UART_FIFO 0x0008 //2 UART Channel Read from RX UART FIFO
#define CHAN_FRAME_TIME 0x000C //3 UART Channel Programmable End of Frame

Time Out R/W 24 bits
#define CHAN_BAUD_RATE 0x0010 //4 UART Channel Programmable frequency 15-0

= Tx, 31-16 = Rx
#define CHAN_CNTLB 0x0014 //5 Expanded UART control bits & Tx Packet delay
#define CHAN_FIFO_LVL 0x0018 //6 UART Channel Programmable FIFO levels 31-

16 = Rx AFL, 15-0 = Tx Amt
#define CHAN_TX_PKT_FIFO 0x001C //7 UART Channel Write to TX Packet FIFO
#define CHAN_RX_PKT_FIFO 0x001C //7 UART Channel Read from Packet FIFO
#define CHAN_RX_FIFO_CNT 0x0020 //8 UART Channel Packet and Data FIFO's
#define CHAN_TX_FIFO_CNT 0x0024 //9 UART Channel Packet and Data FIFO's

FIGURE 4 PMC-BISERIAL-UART UART CHANNEL ADDRESS MAP

There are N UART channels. Each channel has a separate set of control registers as
shown in Figure 4. The offset for each of the channels up to 16 is shown in Figure 5.

 Embedded Solutions Page 15 of 44

 Channel Offsets

#define CH_0 0x0050 //20 address pointer for channel 0
#define CH_1 0x0078 //30 address pointer for channel 1
#define CH_2 0x00A0 //40 address pointer for channel 2
#define CH_3 0x00C8 //50 address pointer for channel 3
#define CH_4 0x00F0 //60 address pointer for channel 4
#define CH_5 0x0118 //70 address pointer for channel 5
#define CH_6 0x0140 //80 address pointer for channel 6
#define CH_7 0x0168 //90 address pointer for channel 7
#define CH_8 0x0190 //100 address pointer for channel 8
#define CH_9 0x01B8 //110 address pointer for channel 9
#define CH_10 0x01E0 //120 address pointer for channel 10
#define CH_11 0x0208 //130 address pointer for channel 11
#define CH_12 0x0230 //140 address pointer for channel 12
#define CH_13 0x0258 //150 address pointer for channel 13
#define CH_14 0x0280 //160 address pointer for channel 14
#define CH_15 0x02A8 //170 address pointer for channel 15
FIGURE 5 PMC-BISERIAL-UART CHANNEL OFFSETS

The base address for PMC-BISERIAL-UART is set by the system. For Base features
the base address is added to the base feature offset. For Channel features the base
address is added to the Channel Offset and to the Channel Feature. Address = Base +
Channel Offset+Channel Feature. All addresses are on LW boundaries and all
accesses affect the entire LW. Writing a byte still affects the other three bytes.

 Embedded Solutions Page 16 of 44

Register Definitions
BASE_REG
Base Control Register (read/write)

Base Control Register

Unused this application

FIGURE 6 PMC-BISERIAL-UART BASE CONTROL REGISTER

All bits are active high and are reset on system power-up or reset.

 Embedded Solutions Page 17 of 44

BASE_GP
Base General Purpose Register (read/write)

Base General Purpose Register

#define BASE_STAT_SW_MASK 0x000000FF // 7-0 are switch bit when installed
#define BASE_STAT_REV_MAJ 0x0000FF00 // Design major revision
#define BASE_STAT_XIL_TYP 0x000F0000 // Design number -- static per

implementation
#define BASE_STAT_REV_MIN 0x0FF00000 // Design minor revision
FIGURE 7 PMC-BISERIAL-UART BASE GP REGISTER

Switch 7-0: The user switch is read through this port. The bits are read as the lowest
byte. Access the read-only port as a long word and mask off the undefined bits. The
dip-switch positions are defined in the silkscreen. For example the switch figure below
indicates a 0x12. The switch is an optional item. Bits have no meaning if not installed.

The Major Revision is used to track FLASH releases to the client. The revision will be
updated when official releases to clients occur to allow the client to tell if a board has
been updated. Currently 1.

The Minor Revision is used to track FLASH updates during development and for
unofficial releases to clients. This revision may roll over depending on the number of
iterations needed. Currently 1.

The Xilinx Type is the design number for a particular version of the board. A new type
will be assigned for each new design implemented. In addition the CardID will also be
updated. UART is type 20.

7--------------------------0

1
0

 Embedded Solutions Page 18 of 44

BASE_INT
Base Interrupt Status Register (read/write)

Base Interrupt Status

#define BASE_INT_CH_0 0x00000001 // Set if interrupt active channel 0
#define BASE_INT_CH_1 0x00000002 // Set if interrupt active channel 1
#define BASE_INT_CH_2 0x00000004 // Set if interrupt active channel 2
#define BASE_INT_CH_3 0x00000008 // Set if interrupt active channel 3
#define BASE_INT_CH_4 0x00000010 // Set if interrupt active channel 4
#define BASE_INT_CH_5 0x00000020 // Set if interrupt active channel 5
#define BASE_INT_CH_6 0x00000040 // Set if interrupt active channel 6
#define BASE_INT_CH_7 0x00000080 // Set if interrupt active channel 7
#define BASE_INT_CH_8 0x00000100 // Set if interrupt active channel 8
#define BASE_INT_CH_9 0x00000200 // Set if interrupt active channel 9
#define BASE_INT_CH_10 0x00000400 // Set if interrupt active channel 10
#define BASE_INT_CH_11 0x00000800 // Set if interrupt active channel 11
#define BASE_INT_CH_12 0x00001000 // Set if interrupt active channel 12
#define BASE_INT_CH_13 0x00002000 // Set if interrupt active channel 13
#define BASE_INT_CH_14 0x00004000 // Set if interrupt active channel 14
#define BASE_INT_CH_15 0x00008000 // Set if interrupt active channel 15
#define BASE_INT_CH_16 0x00010000 // Set if interrupt active channel 16
#define BASE_INT_CH_17 0x00020000 // Set if interrupt active channel 17
#define BASE_INT_CH_18 0x00040000 // Set if interrupt active channel 18
#define BASE_INT_CH_19 0x00080000 // Set if interrupt active channel 19
#define BASE_INT_CH_20 0x00100000 // Set if interrupt active channel 20
#define BASE_INT_CH_21 0x00200000 // Set if interrupt active channel 21
#define BASE_INT_CH_22 0x00400000 // Set if interrupt active channel 22
#define BASE_INT_CH_23 0x00800000 // Set if interrupt active channel 23
#define BASE_INT_CH_24 0x01000000 // Set if interrupt active channel 24
#define BASE_INT_CH_25 0x02000000 // Set if interrupt active channel 25
#define BASE_INT_CH_26 0x04000000 // Set if interrupt active channel 26
#define BASE_INT_CH_27 0x08000000 // Set if interrupt active channel 27

FIGURE 8 PMC-BISERIAL-UART BASE INTERRUPT STATUS

Each UART channel has a multitude of interrupt options. Those possible interrupts are
combined into one for the channel and used to generate a board level interrupt and to
provide the status in the register as shown. Clear the interrupt by servicing the source
channel. Multiple interrupts can be detected in one read. Channels up to the N count
are valid. For example if N = 8 , BASE_INT_CH0 ó BASE_INT_CH7 are valid.

 Embedded Solutions Page 19 of 44

UART_CHAN_CONT

UART CHANNEL CONTROL

#define ChRstA 0x0001 // set to reset channel Tx side
#define LoopBackA 0x0002// set to loop-back FIFO data
#define TxEnable 0x0004// set to enable Tx operation
#define RxEnable 0x0008// set to enable Rx operation

#define RxErrIen 0x0010// set to enable interrupt on Error
#define TxFfAmtIen 0x0020// set to enable Transmit almost empty interrupt
#define RxFfAflIen 0x0040// set to enable Receiver almost full interrupt
#define DCDFallIen 0x0080// set to enable DCD transition interrupt falling edge

#define CTSien 0x0100// Set to enable CTS transition interrupt
#define ForceInt 0x0200// set to force an interrupt from this channel
#define RxOverFlowIen 0x0400// set to enable Rx Data FIFO overflow interrupt
#define RxPckLvlIen 0x0800// set to enable Packet FIFO not empty interrupt

#define ChRstB 0x1000 // set to reset channel Rx side
#define TxBreak 0x2000 // set to cause Tx break – Space on TXD
#define DCDRiseIen 0x4000 // set to enable rising edge DCD interrupt
#define MastIntEn 0x8000// set to allow any interrupts from this channel

#define TxParityOn 0x10000// set to use parity on Tx
#define TxParityOdd 0x20000// set to generate odd parity when Parity is On
#define TxStopBits 0x40000// set to transmit 2 or more stop bits
#define TxLength 0x80000// set to transmit 8 bits cleared = 7 bit data

#define RxParityOn 0x100000// set to use parity on Rx
#define RxParityOdd 0x200000// set to expect odd parity when Parity is On
#define RxStopBits 0x400000// set to expect 2 or more stop bits for framing
#define RxLength 0x800000// set to expect 8 bits, cleared = 7 bit data

#define TxPckEn 0x1000000// set to transmit based on a packets - if cleared

data sent based on Packed or UnPacked Data
#define TxOneByte 0x2000000// set to transmit based on 1 byte per
#define RxPckEn 0x8000000// set to create Rx packet descriptors. Clear to

disable this function - with Packed or UnPacked Data
#define TxParityLvl 0x10000000// Set to use level parity
#define RxParityLvl 0x20000000// Set to use level parity
#define RxOneByte 0x40000000// set to Receive based on 1 byte per LW
FIGURE 9 PMC-BISERIAL-UART UART CHAN CONTROL

 Embedded Solutions Page 20 of 44

ChRstA, ChRstB : When bit(s) is/are set to one, most functions within the channel are
reset. Holding registers are not reset. Memories, state-machines etc. are reset. Clear
for normal operation. The “A/B” indicates this signal is Or’d with the RST signal to make
the channel reset based on local or global resets. A for Tx Functions, B for Rx.
Software timed – leave asserted for at least one UART reference clock period – 271 ns

Loop-BackA: When this bit is set to a one, any data written to the transmit FIFO will be
immediately transferred to the receive FIFO. This allows for fully testing the data FIFOs
without connecting externally. When this bit is zero, normal operation is enabled. The
“A” indicates HW protection to require both Tx and Rx enables to be disabled to do
loop-back testing.

TxEnable when set allows the Transmit state-machine to operate. Depending on the
mode other conditions will also need to be met before transmission will begin. Please
note: if the channel is above 6 [7 and above] the AUX status will need to be present for
the RS232 transceivers to be enabled. This bit should be set after the other pertinent
parameters are programmed.

RxEnable when set allows the Receive state-machine to operate. This bit should be
set after the other pertinent parameters are programmed.

pertinent parameters: Baud Rate, FIFO levels, character level controls [parity, number
of bits etc.] When switching modes the enable should be disabled and then re-enabled
to allow the state-machine to return to idle before resuming processing. Allow several
clock periods at 271 nS per period.

RxErrIen is set to allow the error conditions of Parity, Framing, Packet FIFO overrun to
cause an interrupt to the host. When cleared the status is available but the interrupt is
not.

TxFfAmtIen is set to allow the Transmit FIFO Almost Empty condition to cause an
interrupt. When cleared the status is available but the interrupt is not. An interrupt will
be generated when the transmit FIFO level becomes equal or less than the value
specified in the TX_AMT register, provided the channel master interrupt enable is
asserted.

RxFfAftIen is set to allow the Receive FIFO Almost Full condition to cause an interrupt.
When cleared the status is available but the interrupt is not. An interrupt will be
generated when the receive FIFO level becomes equal or greater to the value specified
in the RX_AFL register, provided the channel master interrupt enable is asserted.

DCDFallIen, DCDRiseIen are set to allow the Data Carrier Detect transitions to cause

 Embedded Solutions Page 21 of 44

an interrupt. The falling and or rising edge of DCD is used to trigger the interrupt
condition. When cleared the status is available but the interrupt is not. The signal is
considered to be rising when the voltage switches from a negative level to a positive
value. For example -12V to +12V. Falling is the reverse. The RS232 receivers invert,
a second inversion within the FPGA on this signal causes the above behavior and
allows the status to properly track this signal.

CTSien is set to allow the Clear To Send transition to cause an interrupt. Rising edge of
CTS is used to trigger the interrupt condition. When cleared the status is available but
the interrupt is not. The signal is considered to be rising when the voltage switches
from a negative level to a positive value. For example -12V to +12V. Falling is the
reverse. The RS232 receivers invert, a second inversion within the FPGA on this signal
causes the above behavior and allows the status to properly track this signal.

ForceInt is set to cause an interrupt to occur. Used for SW development and test
purposes.

RxOverFlowIen is set to allow the Rx FIFO overflow condition to cause an interrupt.
When cleared the status is available but the interrupt is not.

RxPckLvlien is set to allow the Rx Packet Received interrupt. If enabled and a Packet
Descriptor is in the Packet FIFO the interrupt is set. This is a level based interrupt.
Clear by reading the descriptors in the packet FIFO.

TxBreak when set forces the TXD line low which creates a “Break” condition on the
transmit line – forced into the spacing state. Software timed.

MasterIntEn when set allows any of the programmable interrupt conditions to be passed
to the host. When cleared no interrupts are generated by this channel.

TxParityOn when set causes the transmitted data to have parity inserted. When cleared
parity is not added.

TxParityOdd when set causes odd parity when Parity is enabled and Level is not
enabled. When cleared even parity is inserted if enabled.

TxStopBits when set causes the HW to add a wait state – an extra marking state
between characters sent. The minimum is 1 stop bit [sent when TxStopBits is not set].
If another character is not ready when the current one is completed additional marking
bits will also be inserted.

TxLength when set causes 8 bit characters [considered standard] and when cleared 7

 Embedded Solutions Page 22 of 44

bits per byte are transmitted. The Msb is trimmed when in the 7 bit mode.

RxParityOn when set causes the receiver to expect data with parity inserted. Parity is
checked in this mode and parity errors reported. When cleared, parity is not expected
and potential framing errors captured if parity is received.

RxParityOdd when set causes odd parity to be checked when Parity is enabled and not
in level mode. When cleared even parity is checked if enabled.

RxStopBits when set causes the HW to expect a wait state – an extra marking state
between characters sent. The minimum is 1 stop bit [sent when RxStopBits is not set].
If a start bit is received when a second stop bit is expected a framing error will result.

RxLength when set causes 8 bit characters to be expected in the data
stream[considered standard] and when cleared 7 bits per byte are received. The data is
LSB aligned when received in 7 bit mode. Framing errors can result if 8 bit data is
received when 7 is expected and vice-versa.

TxPckEn when set, enables operation in Packet Mode [Packetized]. When cleared
uses the Empty status alone to determine if transmission should occur and how much to
send. See also TxOneByte.

TxOneByte when set and not in packet mode causes data to be transmitted based on
using only the LS byte from the FIFO [unpacked mode – standard low speed UART
operation and use with console operation]. When cleared all 4 bytes are transmitted per
LW [packed mode – higher bandwidth but requires LW based data transfers – divisible
by 4 data frames]

Programming note: Packetized mode is a hybrid of the packed and unpacked modes
allowing for higher bandwidth operation via lower overhead for medium to larger
messages. Please see the packet FIFO description for more details of using this mode.

RxPckEn when set causes the Rx state-machine to group received data into packets
and to load packet descriptors into the Rx Packet FIFO. Packet lengths are
automatically determined based on the programmed FrameTime. Be sure to program
this time-out if in Packet Mode for Rx.

RxOneByte when set and not in Packet Mode causes the received data to be loaded
one byte per LW in the Rx Data FIFO. When cleared the data is loaded 4 bytes per LW
into the Rx Data FIFO.

TxParityLvl when set and parity enabled causes the inserted parity to be a level with the

 Embedded Solutions Page 23 of 44

ODD/EVEN control determining the level. ODD forces a ‘1’ and Even forces a ‘0’.

RxParityLvl when set and parity enabled checks the inserted parity to be a level with the
ODD/EVEN control determining the level. ODD expects a ‘1’ and Even expects a ‘0’.

 Embedded Solutions Page 24 of 44

UART_CHAN_STAT

UART CHANNEL STATUS

#define TxFfMt 0x00000001 // Transmit FIFO Empty
#define TxFfAmt 0x00000002 // Almost Empty
#define TxFfFl 0x00000004 // Full

#define RxFfMt 0x00000010 // Receive FIFO Empty
#define RxFfAfl 0x00000020 // Almost Full
#define RxFfFl 0x00000040 // Full

#define RxParErrLat 0x00000100 // -- status bits in each packet descriptor and

latched here for non packet mode operation
#define RxFrameErrLat 0x00000200 // -- status bits in each packet descriptor and

latched here for non packet mode operation
#define RxDataOvFlLt 0x00000400 //
#define RxPckOvFlLt 0x00000800 //

#define RxPckFifoMt 0x00010000 // Receive Packet FIFO Empty
#define RxPckFifoFull 0x00020000 // Receive Packet FIFO Full
#define TxPckFifoMt 0x00040000 // Transmit Packet FIFO Empty
#define TxPckFifoFull 0x00080000 // Transmit Packet FIFO Full

#define TxPckDoneLat 0x00800000 // Tx Packet Done Latched

#define BreakStatLat 0x10000000 // -- Latched COS edge of Break Condition
#define BreakStat 0x20000000 // -- Current Rx Break Status
#define TxAmtLt 0x40000000 // -- Tx Almost Empty latched status
#define RxAflLt 0x80000000 // -- Rx Almost Full latched status

FIGURE 10 PMC-BISERIAL-UART UART CHAN CONTROL

Transmit FIFO Empty: When a one is read, the transmit data FIFO for the
corresponding channel contains no data; when a zero is read, there is at least one data-
word in the FIFO.

Transmit FIFO Almost Empty: When a one is read, the number of data-words in the
transmit data FIFO for the corresponding channel is less than or equal to the value
written to the CHAN_FIFO_LVL register for that channel; when a zero is read, the level
is more than that value.

Transmit FIFO Full: When a one is read, the transmit data FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more data-word in the

 Embedded Solutions Page 25 of 44

FIFO.

Receive FIFO Empty: When a one is read, the receive data FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one data-word in the
FIFO.

Receive FIFO Almost Full: When a one is read, the number of data-words in the receive
data FIFO for the corresponding channel is greater or equal to the value written to the
CHAN_FIFO_LVL register for that channel; when a zero is read, the level is less than
that value.

Receive FIFO Full: When a one is read, the receive data FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more data-word in the
FIFO.

Parity Error Detected: When a one is read, it indicates that a parity error has occurred
since the status was last cleared. This bit is latched and must be cleared by writing the
same bit back to the channel status port. A zero indicates that no parity error has
occurred. Parity can be programmed to be odd, even, level or not implemented. An
error indicates the received encoding does not match the programmed encoding.

Frame Error Detected: When a one is read, it indicates that a frame error has occurred
since the status was last cleared. This bit is latched and must be cleared by writing the
same bit back to the channel status port. A zero indicates that no frame error has
occurred. A frame error occurs when the size of the received character including
packaging does not match the programmed size.

Start bit is always 1 period wide
Data is 7 or 8 periods wide
Parity is 0 or 1 period wide
Stop Bits are either 1 or 2 minimum periods wide

Leading to the minimum character of 1+7+1 = 9 bits and the max of 1+8+1+2 = 12 bits.
The Hardware automatically determines the expected size based on the parameters.

RxDataOvFlLt when set the Rx Data FIFO has had an overflow condition – FIFO is full
when time to write the next data word. When cleared no error has occurred. This is a
latched bit and is cleared by writing back with this bit position set.

RxDataOvFlLt: when set the Rx Packet FIFO has had an overflow condition – FIFO is
full when time to write the next packet descriptor. When cleared no error has occurred.
This is a latched bit and is cleared by writing back with this bit position set.

 Embedded Solutions Page 26 of 44

RxPckFifoMt : When a one is read, the receive Packet FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one descriptor in the
FIFO.

RxPckFifoFl: When a one is read, the receive Packet FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more descriptor in the
FIFO.

TxPckFifoMt : When a one is read, the transmit Packet FIFO for the corresponding
channel contains no data; when a zero is read, there is at least one descriptor in the
FIFO.

TxPckFifoFl: When a one is read, the transmit Packet FIFO for the corresponding
channel is full; when a zero is read, there is room for at least one more descriptor in the
FIFO.

BreakStat is the synchronized line level of the Rx Break Status. Reading this value
returns the current state of Break Status for this channel. When set a Break is currently
in effect. When ‘0’ break is not being received. Only has meaning when receiver is
enabled and has made it through synchronization.

BreakStatLat is set when a programmed edge is captured based on the Break Status.
For example if the rising edge is enabled, when a Break is detected the latch is set.
Similarly if the falling edge is enabled the status is set when the status transitions low
meaning the break is turned off. This is a sticky bit and is cleared by writing back with
the same bit position set.

TxAmtLt is set when the Transmit Data FIFO level <= the programmed Almost Empty
number of words [set with CHAN_FIFO_LVL]. TxAmtLt is a sticky bit and is cleared by
writing back with the bit position set.

RxAflLt is set when the Receive Data FIFO level >= the programmed Almost Full
number of words [set with CHAN_FIFO_LVL]. RxAflLt is a sticky bit and is cleared by
writing back with the bit position set.

TxPckDoneLat is a sticky bit set when a packet has been transmitted. Cleared by
writing back to the status register with this bit set. This signal can be enabled to
generate an interrupt.

 Embedded Solutions Page 27 of 44

CHAN_UART_FIFO

UART FIFO

#define CHAN_UART_FIFO_MASK_PACKED 0xFFFFFFFF //
#define CHAN_UART_FIFO_MASK_UNPACKED 0x000000FF //

FIGURE 11 PMC-BISERIAL-UART UART FIFO

Writing to the Chan Data FIFO or UART FIFO will load data for the transmitter to utilize.
Data can be written in Packed, Unpacked, or Packetized formats.

Packed data has 4 bytes per LW loaded as shown with the corresponding Mask.

UnPacked data has 1 byte per LW loaded as shown with the corresponding Mask.

Packetized is a hybrid where Packed data is used for the data format with the exception
of the last word which has 1, 2, 3, or 4 bytes loaded. The Packet FIFO is used to
control the number of bytes sent per packet loaded.

Packed is the most efficient data structure in terms of bytes loaded per LW used.
Packetized comes in second and as the total number of bytes in a packet increases
becomes close to the efficiency of the Packed mode but with the flexibility of odd byte
counts.
UnPacked is the least efficient and the most flexible.

When reading from the CHAN_UART_FIFO address the data from the Rx Data FIFO is
presented. The data is packed in the same manner as described above. Packed
mode provides 32 bits per LW read, UnPacked returns data in the lower byte only, and
Packetized a combination of Packed and an odd length word depending on the size of
the packet.

For non Packed modes the non-loaded bytes are set to zero.

 Embedded Solutions Page 28 of 44

CHAN_FRAME_TIME

Programmable Time Out

#define CHAN_FRAME_TIME_MASK 0x00FFFFFF //

FIGURE 12 PMC-BISERIAL-UART FRAME TIME

CHAN_FRAME_TIME is a programmable count to determine how long to wait without a
new character arriving for the receiver to declare “end of packet”. The count is based
on the master clock [32 MHz]. The objective is to have a time long enough to be sure
all characters belonging to a packet are captured into the same packet and short
enough to complete the packet in a timely fashion. If the transmitter is capable of back-
to-back character transmission a 2 character period would be sufficient. If the data is
not so densely packed larger delays may be desired.

 Embedded Solutions Page 29 of 44

CHAN_BAUD_RATE

TX & RX Frequency

#define CHAN_TX_BAUD_MASK 0x0000FFFF //
#define CHAN_RX_BAUD_MASK 0xFFFF0000 //

FIGURE 13 PMC-BISERIAL-UART BAUD RATE

CHAN_BAUD_RATE is a programmable count to determine the frequency of operation.
The master clock is the reference [32 MHz.]. The count programmed [N-1] determines
the frequency of transmission or reception plus adjusts some of the filtering aspects of
the receiver.

Rate Recommended Setting [N-1 shown]
2M 15
1M 31
500K 63
250K 127
125K 255
62.5K 511
31.25K 1023

 Embedded Solutions Page 30 of 44

UART_CHAN_CONTB

UART CHANNEL CONTROL

#define BreakRiseIen 0x0001 // set to enable capture of Break Detection
#define BreakFallIen 0x0002// set to enable capture of Break removal
#define BreakIen 0x0004// set to enable Break Interrupt
#define TxPckDoneIen 0x0008// set to enable Tx Packet Done Interrupt

#define DirTx 0x0010 // set to enable Tx Buffers
#define TermRx 0x0020// set to enable Rx Termination
#define TermTx 0x0040// set to enable Tx Termination

#define TxPckDelayMask 0xFF00// 8 bits to define delay between TX packets

FIGURE 14 PMC-BISERIAL-UART UART CHANB CONTROL

Note: This is a 16 bit register [15-0]. All bits R/W. Undefined bits will return
programmed value.

BreakRiseIen and BreakFallIen are used to select which edges of the Break detection
status are used to generate latched status. Rising is associated with Break being
asserted. Falling is associated with Break being removed.

BreakIen when set allows the captured [latched] status to generate an interrupt from the
a change in state of Break. Clear the interrupt by clearing the latched status.

TxPckDoneIen when set ‘1’ gates the Tx Packet Done latched status through to
generate an interrupt. Clear the interrupt by clearing the latched status or disabling this
bit.

DirTx when set enables the external and internal buffers to transmit. Normally set to ‘1’.
When set to ‘0’ the line level will tristate.

Note: the equivalent Rx control bit is set to receive in HW.

TermRx and TermTx when set cause the RS485 connection to have a 100 ohm resistor
switched in. Analog switches are controlled to allow the parallel termination to be
applied or not. Normal is Rx enabled ‘1’ and Tx not enabled ‘0’. If terminations are in
the cable both maybe off. Under some system conditions both may need to be
enabled.

 Embedded Solutions Page 31 of 44

TxPckDelayMask defines the field used to determine the number of bit periods to delay
between packets when transmitting in packet mode. When set to x00 no additional
delay is added. When set to x01, 1 bit time is added. Please note the HW requires
several bit times of marking state to start a new packet when one completes. The
programmed times are in addition to this HW defined delay.

 Embedded Solutions Page 32 of 44

CHAN_FIFO_LVL

TX & RX FIFO Level

#define CHAN_TXAMT_FIFO_MASK 0x0000FFFF //
#define CHAN_RXAFL_FIFO_MASK 0xFFFF0000 //

FIGURE 15 PMC-BISERIAL-UART FIFO LEVELS

The FIFO’s are 255 deep. Unused bits should be set to zero when programming.

The TX mask is used to set the threshold for the Almost Empty condition. When the
Count for the number of words in the FIFO is less than the programmed level the
Almost Empty status becomes true.

The Rx mask is used to set the threshold for the Almost Full condition. When the count
for the number of words in the Rx FIFO is equal or greater than the programmed level
the Status is set.

For internal loop-back the Tx threshold should be set to at least 0x10 and Rx threshold
set to xEF or less. The transfer engine for internal loop-back uses the almost full and
almost empty status to determine if burst mode can be used. If the threshold is too
small the transfer engine will not operate properly and attempt to do burst transfers
when the FIFO’s don’t have enough room [RX or enough data TX].

 Embedded Solutions Page 33 of 44

CHAN_PACKET_FIFO

PACKET FIFO

#define CHAN_PKT_FIFO_MASK_TX FFFF //
#define CHAN_PKT_FIFO_MASK_RX 0FFF //

FIGURE 16 PMC-BISERIAL-UART PACKET FIFO

Writing to the Chan Packet FIFO will load a descriptor into the TX Packet FIFO. The
descriptor is the number of bytes to send from the TX Data FIFO. The transmitter will
wait for additional data if the Data FIFO is empty when time to read more data to
complete a packet allowing packet sizes larger than the FIFO. Since the FIFO can be
loaded during transmission the Almost Empty Status can be used to trigger adding more
data to extend a packet. If a zero value is read the packet descriptor is ignored.
1óFFFF bytes.

When reading from the Channel Packet FIFO the descriptors for the data in the Rx
FIFO are read plus the status for the packet. The lower bits 11-0 are the size of the
data in bytes and the upper bits 15-12 are the status captured for that packet.

15 RxParErrLat
14 RxFrameErrLat
13 RxDataOvFlLt
12 RxPckOvFlLt

The definitions are found in the Channel Status register description.

Packets on the receive side are limited to the size of 1óFFF bytes.

Programming notes: When in Packet Mode the Channel Packet FIFO interrupt can be
used to detect when new descriptors have been written to the FIFO. If larger Packets
are anticipated, the AFL Data FIFO interrupt can be used to read the data in as it is
received and then parsed based on the descriptor when it is ready. The MT status or
count can be used if polling is preferred; to determine when the descriptor is ready.

The Frame Timer should be programmed to determine the conditions for the end of
frame. If left at the default setting packets will not be properly detected resulting in non-
optimal behavior.

 Embedded Solutions Page 34 of 44

CHAN_RX_FIFO_CNT

RX FIFO Counts

#define CHAN_PKT_CNT_MASK_RX 00FF0000 //
#define CHAN_DATA_CNT_MASK_RX 000000FF //

FIGURE 17 PMC-BISERIAL-UART RX FIFO COUNTS

Reading from this port returns the Packet and Data FIFO counts. The FIFO’s are 512
deep.

CHAN_TX_FIFO_CNT

RX FIFO Counts

#define CHAN_PKT_CNT_MASK_TX 00FF0000 //
#define CHAN_DATA_CNT_MASK_TX 000000FF //

FIGURE 18 PMC-BISERIAL-UART TX FIFO COUNTS

Reading from this port returns the Packet and Data FIFO counts. The FIFO’s are 255
deep.

 Embedded Solutions Page 35 of 44

LOOP-BACK & IO Connection Definitions
PMC-BISERIAL-UART can be used with direct end point cabling or with an interface.
Dynamic Engineering uses HDEterm68 along with loop-back connections to accomplish
loop-back.

The following table shows the connections the HDEterm68 used in the loop-back test.
PMC BiSerial III has 34 Differential IO. Each UART uses 2 IO to create the TX and RX
connections. The reference SW uses loop-back within the same channel as a test
mechanism. IO0, IO1 form UART 1. The even IO are the TX and the Odd are the RX.

Twisted Pair: Pins shown for P1 SCSI connector and match on HDEterm68

UART1_TXP 1 UART1_RXP 2
UART1_TXN 35 UART1_RXN 36

UART2_TXP 3 UART2_RXP 4
UART2_TXN 37 UART2_RXN 38

UART3_TXP 5 UART3_RXP 6
UART3_TXN 39 UART3_RXN 40

UART4_TXP 7 UART4_RXP 8
UART4_TXN 41 UART4_RXN 42

UART5_TXP 9 UART5_RXP 10
UART5_TXN 43 UART5_RXN 44

UART6_TXP 11 UART6_RXP 12
UART6_TXN 45 UART6_RXN 46

UART7_TXP 13 UART7_RXP 14
UART7_TXN 47 UART7_RXN 48

UART8_TXP 15 UART8_RXP 16
UART8_TXN 49 UART8_RXN 50

Dynamic Engineering Drivers and Reference SW include loop-back tests using the
above connections.

 Embedded Solutions Page 36 of 44

PMC PCI Pn1 Interface Pin Assignment
The figure below gives the pin assignments for the PMC Module PCI Pn1 Interface.
See the User Manual for your carrier board for more information. Unused pins may be
assigned by the specification and not needed by this design.

 TCK -12V 1 2

GND INTA# 3 4
 5 6
BUSMODE1# +5V 7 8
 9 10
GND 11 12
CLK GND 13 14
GND 15 16
 +5V 17 18
 AD31 19 20
AD28 AD27 21 22
AD25 GND 23 24
GND C/BE3# 25 26
AD22 AD21 27 28
AD19 +5V 29 30
 AD17 31 32
FRAME# GND 33 34
GND IRDY# 35 36
DEVSEL# +5V 37 38
GND LOCK# 39 40
 41 42
PAR GND 43 44
 AD15 45 46
AD12 AD11 47 48
AD9 +5V 49 50
GND C/BE0# 51 52
AD6 AD5 53 54
AD4 GND 55 56
 AD3 57 58
AD2 AD1 59 60
 +5V 61 62
GND 63 64

FIGURE 19 PMC-BISERIAL-UART PN1 INTERFACE

 Embedded Solutions Page 37 of 44

PMC PCI Pn2 Interface Pin Assignment
The figure below gives the pin assignments for the PMC Module PCI Pn2 Interface.
See the User Manual for your carrier board for more information. Unused pins may be
assigned by the specification and not needed by this design.

 +12V 1 2

TMS TDO 3 4
TDI GND 5 6
GND 7 8
 9 10
 +3.3V 11 12
RST# BUSMODE3# 13 14
 +3.3V BUSMODE4# 15 16
 GND 17 18
AD30 AD29 19 20
GND AD26 21 22
AD24 +3.3V 23 24
IDSEL AD23 25 26
+3.3V AD20 27 28
AD18 29 30
AD16 C/BE2# 31 32
GND 33 34
TRDY# +3.3V 35 36
GND STOP# 37 38
PERR# GND 39 40
+3.3V SERR# 41 42
C/BE1# GND 43 44
AD14 AD13 45 46
GND AD10 47 48
AD8 +3.3V 49 50
AD7 51 52
+3.3V 53 54
 GND 55 56
 57 58
GND 59 60
 +3.3V 61 62
GND 63 64

FIGURE 20 PMC-BISERIAL-UART PN2 INTERFACE

 Embedded Solutions Page 38 of 44

Applications Guide
Interfacing
Some general interfacing guidelines are presented below. Do not hesitate to contact
the factory if you need more assistance.

ESD
Proper ESD handling procedures must be followed when handling the PMC-BISERIAL-
UART. The card is shipped in an anti-static, shielded bag. The card should remain in
the bag until ready for use. When installing the card the installer must be properly
grounded and the hardware should be on an anti-static workstation.

Start-up
Make sure that the "system" can see your hardware before trying to access it. Many
BIOS will display the PCI devices found at boot up on a "splash screen" with the
VendorID and CardId and an interrupt level. Look quickly, if the information is not
available from the BIOS then a third party PCI device cataloging tool will be helpful.

Watch the system grounds
All electrically connected equipment should have a fail-safe common ground that is
large enough to handle all current loads without affecting noise immunity. Power
supplies and power consuming loads should all have their own ground wires back to a
common point.

We provide the components. You provide the system. Only careful planning and
practice can achieve safety and reliability. Inputs can be damaged by static discharge,
or by applying voltage outside of the device rated voltages.

 Embedded Solutions Page 39 of 44

Construction and Reliability
Dynamic Engineering Modules are conceived and engineered for rugged industrial
environments. PMC-BISERIAL-UART is constructed out of 0.062-inch thick High-Temp
ROHS compliant FR4 material.

ROHS and standard processing are available options.

Through-hole and surface-mount components are used. PMC connectors are rated at 1
Amp per pin, 100 insertion cycles minimum. These connectors make consistent, correct
insertion easy and reliable.

PMC’s are secured against the carrier with four screws attached to the 2 stand-offs and
2 locations on the front panel. The four screws provide significant protection against
shock, vibration, and incomplete insertion.

The PCB provides a (typical based on PMC) low temperature coefficient of 2.17 W/°C
for uniform heat. This is based upon the temperature coefficient of the base FR4
material of 0.31 W/m-°C, and taking into account the thickness and area of the board.
The coefficient means that if 2.17 Watts are applied uniformly on the component side,
then the temperature difference between the component side and solder side is one
degree Celsius.

PMC-BISERIAL-UART has internal thermal planes made up of heavy copper power and
ground planes. The planes will spread the thermal load over the entire board to
minimize hotspots and increase the “coolability”. The components are Industrial
temperature rated or better. Thermal vias are added under components to tie in with
the thermal plane directly. Where possible devices with thermal ties were chosen to
allow direct connection to the ground plane.

 Embedded Solutions Page 40 of 44

Thermal Considerations
The PMC-BISERIAL-UART design consists of CMOS circuits. The power dissipation
due to internal circuitry is very low. It is possible to create higher power dissipation with
the externally connected logic. If more than one Watt is required to be dissipated due to
external loading, then forced-air cooling is recommended. With the one degree
differential temperature to the solder side of the board, external cooling is easily
accomplished.

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options. http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the suspected unit is
at fault. Then call the Customer Service Department for a RETURN MATERIAL
AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping
carton if this is available, and ship prepaid and insured with the RMA number clearly
written on the outside of the package. Include a return address and the telephone
number of a technical contact. For out-of-warranty repairs, a purchase order for repair
charges must accompany the return. Dynamic Engineering will not be responsible for
damages due to improper packaging of returned items. For service on Dynamic
Engineering Products not purchased directly from Dynamic Engineering contact your
reseller. Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.
Out of Warranty Repairs
Out of warranty repairs will be billed on a material and labor basis. The current
minimum repair charge is $150. Customer approval will be obtained before repairing
any item if the repair charges will exceed one half of the quantity one list price for that
unit. Return transportation and insurance will be billed as part of the repair and is in
addition to the minimum charge.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 Dubois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
support@dyneng.com

 Embedded Solutions Page 41 of 44

Specifications
Host Interface (PCI): PCI Interface 33 MHz. 32-bit

Serial Interfaces: 8 UART channels each with Rx, Tx signals

TX Bit-rates generated: user programmable for each UART channel with the standard baud

rates up to 2M and custom programmed rates.

Software Interface: Control Registers, FIFO’s, and Status Ports

Initialization: Hardware reset forces all registers to 0 except as noted

Access Modes: Long-word boundary space (see memory map)

Wait States: One for all addresses

Interrupt: Multiple programmable interrupts per channel for flow control and
error recognition.

DMA: No DMA support.

Onboard Options: All Options are Software Programmable

Interface Options : Front or Rear IO. Front IO via P1 SCSI connector. Rear IO
through Pn4.

Dimensions: Standard Single PMC.

Construction: High Temp ROHS compliant FR4 Multi-Layer Printed Circuit,

Through-Hole and Surface-Mount Components

Temperature Coefficient: 2.17 W/oC for uniform heat across PMC [similar for other formats]

Power TBD

 Embedded Solutions Page 42 of 44

Order Information
Please refer to our PMC-BISERIAL-UART webpage for the most up to date information:

http://www.dyneng.com/pmc_biserial_III.html

PMC-BISERIAL-UART Standard version with 8 UARTs, each with Rx, Tx RS-422
signals supported. Programmable for any baud rate 2Mó
150, programmable character length[7,8], stop bits[1,2],
parity[odd, even, level, none]. 255x32 FIFO per Tx and
Rx. Packet, Packed, and UnPacked operation supported.
ROHS and non-ROHS assembly. Industrial temp
components standard.

-Switch Add the 8 position user switch to allow for multiple boards

in one system or other user purposes.

-CC Add conformal coating option. Recommended for
condensing or near condensing environments

-ROHS Leaded solder is standard on this product.
Add -ROHS for ROHS processing.

HDEterm68 http://www.dyneng.com/HDEterm68.html is available as a
breakout or for loop-back purposes. Available with several
options including connector orientation, DIN rails, Terminal
Block, header strip.

HDEcabl68 SCSI cable suitable to interconnect PMC BiSerial III and
HDEterm68. Available in various lengths. Twisted
shielded construction.

All information provided is Copyright Dynamic Engineering

 Embedded Solutions Page 43 of 44

Glossary
Acronyms and other specialized names and their meaning:

PMC PCI Mezzanine Card - establishes common

connectors, connections, size and other mechanical
features.

PCI Peripheral Component Interconnect – parallel bus

from host to this device.

VendorID Manufacturers number for PCI/PCIe boards. DCBA
is Dynamic Engineering’s ID.

CardID Unique number assigned to design to distinguish
between all designs of a particular vendor.

UART Universal Asynchronous Receiver Transmitter.
Common serialized data transfer with start bit, stop
bit, optional parity, optional 7/8 bit data. Can be over
any electrical interface. RS232 and RS422 are most
common.

Baud Used as the bit period for this document. Not strictly
correct but is the common usage when talking about
UART’s.

FIFO First In First Out Memory

JTAG Joint Test Action Group – a standard used to control
serial data transfer for test and programming
operations.

TAP Test Access Port – basically a multi-state port that
can be controlled with JTAG [TMS, TDI, TDO, TCK].
The TAP States are the states in the State machine
controlled by the commands received over the JTAG
link.

 Embedded Solutions Page 44 of 44

TMS Test Mode State – this serial line provides the state
switching controls. ‘1’ indicates to move to the next
state, ‘0’ means stay put in cases where delays can
happen, otherwise 0,1 are used to choose which
branch to take. Due to complexity of state
manipulation the instructions are usually precompiled.
Rising edge of TCK valid.

TDI Test Data In - this serial line provides the data input
to the device controlled by the TMS commands. For
example the data to program the FLASH comes on
the TDI line while the commands to the state-machine
to move through the necessary states comes over
TMS. Rising edge of TCK valid.

TCK Test Clock provides the synchronization for the TDI,
TDO and TMS signals

TDO Test Data Out is the shifted data out. Valid on the
falling edge of TCK. Not all states output data.

Packet Group of characters transferred. When the
characteristics of a group of characters is known the
data can be stored in packets, transferred as such
and the system optimized as a result. Any number of
characters can

Packed When UART characters are always sent/received in
groups of 4 allowing full use of host bus / FIFO
bandwidth.

UnPacked When UART characters are sent on an unknown
basis requiring single character storage and transfer
over the host bus.

MUX Multiplexor – multiple signals multiplexed to one with
a selection mechanism to control which path is active.

Flash Non-volatile memory used on Dynamic Engineering
boards to store FPGA configurations or BIOS.

