
 Embedded Solutions Page 1 of 56

DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

(831) 457-8891 Fax (831) 457-4793
 http://www.dyneng.com sales@dyneng.com

 Est. 1988

User Manual

PCI-NECL2-RTN10

Bidirectional NECL I/O with DMA
12 bit GPIO port [TTL]

Revision A3

Corresponding Hardware: Revision B
10-2011-0102

Corresponding Firmware: Revision A
12/18/17

 Embedded Solutions Page 2 of 56

PCI-NECL2-RTN10
PCI format Full Duplex Byte Wide Port NECL port

Supported with large SDRAM based FIFO
GPIO - TTL Port

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060

(831) 457-8891
FAX: (831) 457-4793

This document contains information of proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the recipient, by accepting this material, agrees
that the subject matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and
complete. Still, the company reserves the right to make improvements or changes in the
product described in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the application or use of the
device described herein.

The electronic equipment described herein generates, uses, and can radiate radio
frequency energy. Operation of this equipment in a residential area is likely to cause
radio interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

Connection of incompatible hardware is likely to cause serious damage.

 Embedded Solutions Page 3 of 56

PRODUCT DESCRIPTION PART I 6 	

PRODUCT DESCRIPTION PART II 11 	

PROGRAMMING 15 	

ADDRESS MAP 16 	

PROGRAMMING 17 	

REGISTER DEFINITIONS - BASE 19 	
RTN10_BASE_PLL 19	
RTN10_BASE_SWITCH 21	
RTN10_BASE_STATUS 22	
RTN10_BASE_GPIO_DIR 23	
RTN10_BASE_GPIO_DATA 24	
RTN10_BASE_GPIO_IO 24	

REGISTER DEFINITIONS – CHANNEL 25 	
RTN10_CHAN_CNTRL 25	
RTN10_CHAN _STATUS 28	
RTN10_CHAN_WR_DMA_PNTR 32	
RTN10_CHAN_TX_FIFO_COUNT 33	
RTN10_CHAN_RD_DMA_PNTR 34	
RTN10_CHAN_RX_FIFO_COUNT 35	
RTN10_CHAN_FIFO 36	
RTN10_CHAN_TX_AMT_LVL 36	
RTN10_CHAN_RX_AFL_LVL 36	
RTN10_CHAN_TX 37	
RTN10_CHAN_TX_READY_REG 38	
RTN10_CHAN_RX 39	
RTN10_CHAN_RX_MEM_A 41	
RTN10_CHAN_TX_MEM_A 41	
RTN10_CHAN_SET_MEM 42	
RTN10_CHAN_RX_MEM_B 42	
RTN10_CHAN_TX_MEM_B 42	
RTN10_CHAN_RX_MEM_C 43	
RTN10_CHAN_TX_MEM_C 43	
RTN10_CHAN_RX_MEM_D 44	
RTN10_CHAN_TX_MEM_D 44	

Table of Contents

 Embedded Solutions Page 4 of 56

RTN10_CHAN_RX_LOOP_CNT 45	
RTN10_CHAN_TX_LOOP_CNT 45	
RTN10_CHAN_RX_SDRAM_CMD 46	
RTN10_CHAN_TX_SDRAM_CMD 46	
RTN10_CHAN_TX_REF_COUNT 47	

LOOP-BACK 48 	

D100 STANDARD PIN ASSIGNMENT 49 	

APPLICATIONS GUIDE 51 	

Interfacing 51 	

Construction and Reliabili ty 52 	

Thermal Considerations 52 	

WARRANTY AND REPAIR 53 	

Service Policy 53 	
Out of Warranty Repairs 53	

For Service Contact: 53 	

SPECIFICATIONS 54 	

ORDER INFORMATION 56 	

 Embedded Solutions Page 5 of 56

FIGURE 1	 PCI-NECL2-RTN10 PLL 7	
FIGURE 2	 PCI-NECL2-RTN10 BLOCK DIAGRAM 8	
FIGURE 3	 PCI-NECL2-RTN10 INPUT TERMINATION 9	
FIGURE 4	 PCI-NECL2-RTN10 OUTPUT TERMINATION 9	
FIGURE 5	 PCI-NECL2-RTN10 XILINX BASE ADDRESS MAP 16	
FIGURE 6	 PCI-NECL2-RTN10 XILINX CHANNEL ADDRESS MAP 16	
FIGURE 7	 PCI-NECL2-RTN10 BASE CONTROL REGISTER 19	
FIGURE 8 	 PCI-NECL2-RTN10 ID AND SWITCH BIT MAP 21	
FIGURE 9 	 PCI-NECL2-RTN10 STATUS PORT BIT MAP 22	
FIGURE 10 	 PCI-NECL2-RTN10 GPIO DIRECTION BIT MAP 23	
FIGURE 11 	 PCI-NECL2-RTN10 GPIO OUTPUT DATA BIT MAP 24	
FIGURE 12 	 PCI-NECL2-RTN10 GPIO INPUT DATA BIT MAP 24	
FIGURE 13 	 PCI-NECL2-RTN10 CHANNEL CONTROL REGISTER 25	
FIGURE 14 	 PCI-NECL2-RTN10 CHANNEL STATUS PORT 28	
FIGURE 15	 PCI-NECL2-RTN10 WRITE DMA POINTER REGISTER 32	
FIGURE 16	 PCI-NECL2-RTN10 TX FIFO DATA COUNT PORT 33	
FIGURE 17	 PCI-NECL2-RTN10 READ DMA POINTER REGISTER 34	
FIGURE 18	 PCI-NECL2-RTN10 TX FIFO DATA COUNT PORT 35	
FIGURE 19	 PCI-NECL2-RTN10 RX/TX FIFO PORT 36	
FIGURE 20	 PCI-NECL2-RTN10 TX ALMOST EMPTY LEVEL REGISTER 36	
FIGURE 21	 PCI-NECL2-RTN10 RX ALMOST FULL LEVEL REGISTER 36	
FIGURE 22	 PCI-NECL2-RTN10 CHANNEL TRANSMIT CONTROL REGISTER 37	
FIGURE 23	 PCI-NECL2-RTN10 TX HOLD OFF REGISTER 38	
FIGURE 24	 PCI-NECL2-RTN10 CHANNEL RX CONTROL REGISTER 39	
FIGURE 25	 PCI-NECL2-RTN10 RX MEMORY A REGISTER 41	
FIGURE 26	 PCI-NECL2-RTN10 TX MEMORY A REGISTER 41	
FIGURE 27	 PCI-NECL2-RTN10 SET MEMORY REGISTER 42	
FIGURE 28	 PCI-NECL2-RTN10 RX MEMORY B REGISTER 42	
FIGURE 29	 PCI-NECL2-RTN10 TX MEMORY B REGISTER 42	
FIGURE 30	 PCI-NECL2-RTN10 RX MEMORY C REGISTER 43	
FIGURE 31	 PCI-NECL2-RTN10 TX MEMORY C REGISTER 43	
FIGURE 32	 PCI-NECL2-RTN10 RX MEMORY D REGISTER 44	
FIGURE 33	 PCI-NECL2-RTN10 TX MEMORY D REGISTER 44	
FIGURE 34	 PCI-NECL2-RTN10 RX LOOP COUNT REGISTER 45	
FIGURE 35	 PCI-NECL2-RTN10 TX LOOP COUNT REGISTER 45	
FIGURE 36	 PCI-NECL2-RTN10 RX SDRAM COMMAND REGISTER 46	
FIGURE 37	 PCI-NECL2-RTN10 TX SDRAM COMMAND REGISTER 46	
FIGURE 38	 PCI-NECL2-RTN10 TX REFERENCE COUNT PORT 47	
FIGURE 39	 PCI-NECL2-RTN10 STANDARD D100 PINOUT 49	

List of Figures

 Embedded Solutions Page 6 of 56

Product Description Part I

Naming: PCI-ECL-II is the base design and can be outfit with NECL and other ECL
family components. The specific versions of the implementation will have the “ECL”
changed to “NECL” etc. plus an extension added for the VHDL set and any other
alterations made to the board.

RTN10 uses the classic negative ECL or NECL plus a specific FPGA file set designed
to provide byte wide data transfers at a programmable IO rate. A receiver is also
designed in which can operate in parallel with the transmitter. One of the two available
channels is tied to the IO [channel 0]. The second channel has memory and loop-back
capabilities but no IO in this implementation. RTN10 is an upgrade from the original
STE3A design. Enough changes are incorporated that we changed the name and
CardId to properly identify the design. RTN10 is recommened for new designs.

PCI-NECL2-RTN10 is part of the PCI Compatible family of modular I/O components.
PCI-NECL2-RTN10 provides a Spartan 6 FPGA, along with 40 ECL [NECL] and 12 TTL
I/O lines, a programmable PLL and FIFO support with full bidirectional DMA capabilities
in a half-length single slot card.

The FIFO’s are based on SDRAM devices with programmable offsets to allow the
memory to be partitioned into 1 or 2 sections per port. The sections can be the same
size or programmed for different RX and TX sizes. The total memory per port is 32
Mbytes.

The RTN10 version of the design adds clocking and framing options. Select rising or
falling edge stable output on transmit and rising or falling edge capture for Rx. Also
select the option to not use the enable and capture all data presented at the Rx port.

The PCI bus implementation is 32 bits at 33 MHz, universal voltage. The hardware
supports direct access software controlled read/write access to all locations plus DMA
support to the high bandwidth FIFO ports. The hardware is optimized for simultaneous
bidirectional DMA access to support the high data rates available on the PCI-NECL2-
RTN10.

The Cypress 22393 PLL is handy for creating user specific frequencies with which to
operate the state-machines and I/O. The driver supports programming the PLL over a
serial I²C bus. Four clocks are received from the PLL into the FPGA - see figure 1
below. The clock routing uses matched lengths to provide in-phase references should
they be necessary in your design. The FPGA clock features provide further clock
functionality. RTN10 uses the on-board oscillator (50 MHz) as the reference for the

 Embedded Solutions Page 7 of 56

PLL, and PLLA is used to set the transmit frequency when used for loop-back. A .jed
file can be used to set this frequency.

Cypress has a utility available for calculating the frequency control words for the PLL.
http://www.dyneng.com/CyberClocks.zip is the URL for the Cypress software used to
calculate the PLL programming words. The PLL responds to one of two device ids (only
one works). As part of our ATP our software determines the address of the PLL. The
software is part of the engineering kit and can be ported to your application.

FIGURE 1 PCI-NECL2-RTN10 PLL

An 8-bit "dip switch" is provided on the PCI-NECL2-RTN10 for user-defined purposes.
The switch configuration is readable via a memory-mapped I/O port. We envision the
switch being used for software configuration control, PCI board identification or test
purposes.

LED’s are provided on the board to indicate that the 3.3, 2.5, 1.2, and -5V regulators are
operating properly plus the PCI 5V and 3.3V. Local regulation is provided for 3.3, 2.5,
1.2, and -5V volts. The 3.3V regulator is used for the Spartan 6 due to a lower Vmax
than the PCI supplied 3.3V. Each of the voltages other than the PCI 3.3V and 5V have
voltage comparators controlling the LED’s. For example, when the –5V LED is
illuminated if it is within tolerance.

S2/SUSPEND
SDAT_SO
SCLK_S1
OE_SHUTDWN
XTALOUT

XTALIN

CLKE
CLKD
CLKC
CLKB
CLKA

XREF
V
D
D

A
V
D
D

A
G
N
D

G
N
D

15
12
13
16
5

4

8
7
1
9
10

6

22393 Triple PLL

PLL1

+3.3V

+3.3V

1 4 22ΩaRP28
2 3 22ΩbRP28

1 4 22ΩaRP29
2 3 22ΩbRP29
1 4 22ΩaRP39
2 3 22ΩbRP39

R7 R10

SWITCH0

SWITCH1

SWITCH2

SWITCH3

SWITCH4

SWITCH5

SWITCH6

SWITCH7

PLLA

PLLB

PLLC

PLLD

PLLS2

PLLSDAT

PLLSCLK

PLLCLKREF

CLKSDRAMOUT

M1CKX

M5CKX

AC9
AC11
AC13
AC14
AC15
AC16
AC17
AC19

AF14
AF13
AD12
AD14

AD21
AD19
AD18
AD17

AF18

AF12
AD13

U34c

Spartan VI FG676

R6
10Ω,0603,1%

1 2
C50

.22uF, 50V, 10% X7R12
C51

.22uF, 50V, 10% X7RR8

1 2R71

22Ω,0603,1%
SDRAMCLKREF

M5CKX
M1CKX

SDRAM

 Embedded Solutions Page 8 of 56

FIGURE 2 PCI-NECL2-RTN10 BLOCK DIAGRAM

PCI-NECL2-RTN10 has both NECL and TTL I/O interfaced to the D100 connector.
There are 20 NECL inputs and 20 NECL outputs on the board as indicated in figure 2
above. RTN10 uses the first 10 IO for transmit and receive plus number 18 for a
reference clock. 7-0 = data, 8 = enable, 9 = clock.

12 TTL I/O lines are supported with open drain drivers with pull-ups. The LVC1G125
open drain drivers have 64+ mA of sink capability. The IO can be referenced to 3.3 or
5V. Please note the ‘125’s are 3.3V devices and when enabled and driven “hi” the
output will be pulled down to 3.3V. To achieve 5V on the IO, the driver is disabled
allowing the resistor to pull to the 5V level. The reference can also be set to 3.3V in
which case the driven [hi] and off states are the same. Each IO can be set to drive or
be an input independently. RTN10 has a GPIO port for this purpose.

PCI INTERFACE

DMA
FIFO

SDRAM
FIFO
SM

TX SM RX SM
PLL

OSC

FLASH

JT
A

G

20 ECL OUT 20 ECL IN 12 TTL IO

DIPSWITCH

8M X 32
SDRAM

x2

Spartan 6 100 LXI

 Embedded Solutions Page 9 of 56

FIGURE 3 PCI-NECL2-RTN10 INPUT TERMINATION

The NECL inputs are terminated with 50Ω to -2V using a parallel 82Ω / 120Ω equivalent
circuit as shown in figure 3 above. The NECL input lines are routed as differential
pairs with matched lengths and impedance control [trace and space]. The lengths are
matched from the connector edge to the Xilinx ball to allow for high-speed low-skew
operation.

FIGURE 4 PCI-NECL2-RTN10 OUTPUT TERMINATION

The NECL outputs are terminated with 470Ω terminations to –5V. The NECL output
lines are routed as differential pairs with matched lengths and impedance control [trace
and space]. The lengths are matched from the Xilinx ball to the connector edge to allow
for high-speed low-skew operation.

The Xilinx FPGA is re-configurable by loading a new programming file into the FLASH
storage device. The file can be generated with the standard Xilinx design software.
The standard Xilinx Parallel JTAG cable is connected to the on-board header to
program the FLASH using the Xilinx iMPACT software.

IN0 Q
D-
D+

VBB

7
3

2

NECL TO LVTTL

aU1

IN0P

IN0M

14 82ΩaRP27
23 82ΩbRP27

14 120ΩaRP33
23 120ΩbRP33

-5
V

1 2
R23

40.2Ω,0805,1%

N0

OUT0P

OUT0M
OUT0 D

Q-
Q+

TTL NECL
2

6

7

U63a

TTL TO NECL

1 4 RP55a47Ω

2 3 RP55b47Ω

-5V

0M

0P

 Embedded Solutions Page 10 of 56

The engineering kit includes a cable and the HDEterm100. The HDEterm100 serves as
a breakout from the cable to screw terminal block. HDEterm100 has matched length,
differential routing and several termination options that can be installed. For more
information on the HDEterm100 please visit the web page.
http://www.dyneng.com/HDEterm100.html

In addition a “cross over” cable is available which interconnects the ECL IN and OUT IO
are cross connected 1:1 to allow two boards to connected for data transfer. The TTL
lines are connected 1:1 between the boards. This cable is used for our two board
testing.

The PLL is used to set the TX rate indirectly. RTN10 uses the clock received on NECL
Input 18 as the transmit rate reference. PLLA is used to generate NECL Output 18.
With the cross over cable Card 1 PLLA will be used as the reference for Card 2 and
vice-versa. Output 18 can be looped back to Input 18 to use the PLL as the local
reference. [This is done in the user cable.]

RTN10 is tested at 29.4 MHz with the .jed file included with the reference SW. New
.JED files can be produced with the Cypress Semiconductor CyberClocks application.
The local oscillator frequency is 50 MHz.

 Embedded Solutions Page 11 of 56

Product Description Part II
A wide range of interfaces and protocols can be implemented with the PCI-ECL-II;
UART, Manchester encoding, serial or parallel, ECL/NECL and/or TTL. The interfaces
can be created using the hardware and development tools provided with the PCI-ECL
along with the Xilinx software.

Once your requirements are known the design can be implemented with VHDL and
compiled with the Xilinx design software. The output file can be programmed into the
Xilinx Flash. Because the FLASH is reprogrammable, the design can be implemented
in phases. Experiment and test out concepts and partial implementations during the
design phase or perhaps simulate other hardware that needs to be implemented.

As an example consider a parallel interface with 16 data lines and 3 control signals.
The PCI-ECL-II has 40 ECL differential I/O, so there is enough I/O for a full duplex
implementation. The parallel channel would be supported with the 8Mx32 [SDRAM]
FIFO plus any internal FIFO’s that were instantiated out of block RAM. The FPGA is a
Spartan 6 LX100 industrial temp part in the –3 speed grade. The PCI interface and
SDRAM controller only occupy a small percentage of the device. RTN10 including
everything uses approximately 19%. There is of room for more complex data formatting
requirements.

For systems with an external reference clock, ECL input bits 19, 18, 17, 16 and 9 are
received by the FPGA on a long line pins. They can be routed through a Digital Clock
Manager to create a low skew clock distribution based on an external reference.

The data flow for transmission is Host memory transferred into the transmit FIFO via
DMA transfers. The user state machine reads the data from the FIFO on the output
side and applies the user protocol before transmitting. On the receive side the data
flows into the FPGA, is processed to convert to a format suitable for storing, and then
loaded into the receive FIFO. The data is read from the receive FIFO by the PCI control
state-machine and moved into the host memory via DMA transfers.

The path to the Transmit or from the Receive local FIFO’s is indirect. In the Tx path the
PCI DMA transfers to the SDRAM TX DMA FIFO within the SDRAM group. The FIFO is
read by the SDRAM controller and the data moved to the SDRAM. The data stored in
the SDRAM is moved to the output FIFO within the SDRAM group. The SDRAM
controller uses the state of the FIFO’s and SDRAM to determine when to move data or
not. The Tx state-machine reads from the Tx IO FIFO in the SDRAM group to interface
with the Tx encoding for that design. In RTN10 a secondary TX FIFO [16Kx32] is used
to convert between the 33 MHz and the user TX rate. Separate logic converts from 32
bits to the 8 bits transmitted.

 Embedded Solutions Page 12 of 56

The receive path is similar with the receiver controller using a rate matching local FIFO
and moving data to the SDRAM RX IO FIFO. The RX IO FIFO is read by the SDRAM
controller and moved to the SDRAM. From the SDRAM, data is loaded to the SDRAM
RX DMA FIFO for transfer to the host memory.

The SDRAM controller block has FIFO counts available to allow the TX and RX SM to
properly interact with the FIFO’s built into the SDRAM controller.

The SDRAM controller automatically uses page mode and single transfers based on
data and space available. RTN10 operates at 132 MHz within the SDRAM controller,
internal FIFO ports and SDRAM.

The SDRAM controller has bypass transfer units which if enabled move data directly
from the SDRAM TX DMA FIFO to the SDRAM TX IO FIFO and similarly from the
SDRAM RX IO to the SDRAM RX DMA FIFO’s. Each bypass is independent. This
allows all of the SDRAM to be tied to one port or the other.

The SDRAM controller has an arbitration unit which determines on a round-robin basis
which channel to service next. When an operation completes the arbiter looks at each
of the other options before checking the same channel again. The logic has skip-ahead
to save states when a channel is disabled.

The TX and RX have load and unload operations with separate enables to allow the
software to configure TX only, RX only, TX load before start-up etc. The design
includes a FIFO mode and a retransmit mode. The retransmit mode has the ability to
send a header, body, and tail. The FIFO mode makes the SDRAM act like a FIFO and
is the mode used in the RTN10. Please see the programming section for more details.

The full bandwidth of the PCI bus is utilized during DMA transfers. There is some
overhead on the PCI bus side, which will limit the actual sustainable transfer rate
somewhat compared to the theoretical limit. Looking at the other side of the equation; if
we assume parallel data with 1 channel operating at 35 Mbytes/second in each
direction, this creates a total of 70 Mbytes/second on the PCI bus – approximately 53%
loading of the theoretical maximum.

Using the same example and looking at the storage, one can see that the OS can "go
away" for 4M words x 4 bytes/word / 70Mbytes/sec => 239.6 mS without receive data
over-running the FIFO when used for receive or under-running the FIFO when used for
transmit. With Windows® and other high level OS based system the OS can neglect
data movement due to other requirements - dealing with the keyboard or HDD for
example. Having adequate storage can make a big difference in system performance.

 Embedded Solutions Page 13 of 56

The memory diagram shows the paths and sizes of the available memory for one port.
There are two ports in RTN10. All of the IO is attached to port 0. Port 1 does have the
memory shown. As described above the memory has a lot of options for controlling
data path. Include SDRAM or bypass, perform loop-back at various locations or not,
asymmetric or symmetric operation with Rx and Tx. Programmable sizes for the Rx and
Tx memory allowing more SDRAM to be allocated to your programs requirements.
Please refer to the register definitions for the details of programming the SDRAM.

511 x32

1023 x16

16383 x32

RX IO TX IO

16383 x32

SDRAM 16M x16

511 x32

1023 x16

511 x32

1023 x16

511 x32

1023 x16

SDRAM IF Logic

SDRAM
Controller

DMA OUT DMA IN

RX TX

 Embedded Solutions Page 14 of 56

Current Feature List
• Xilinx Spartan 6 series FPGA
• Bidirectional DMA capable 32/33 PCI bus interface
• PLL with 4 programmable clocks tied to FPGA
• 8M x 32 Data buffer per port [RX/TX pair]
• 20 ECL Outputs
• 20 ECL Inputs
• 12 TTL I/O
• 8 position "DIP Switch"
• Power LED’s
• On-going development with a "FLASH" program

As Dynamic Engineering adds features to the hardware we will update the PCI-ECL-II
page on the Dynamic Engineering website. If you want some of the new features, and
have already purchased hardware, we will support you with a FLASH update. We will
reprogram the FLASH on your board for you or if you have the engineering kit and your
own download cable, send you the new bit file. If you are interested please contact
sales@dyneng.com for arrangements.

The basic PCI identifying information will not change with the updates. The revision
field will change to allow configuration control. STE3 is design 1 STE3A is design 2,
RTN10 is design 3 for the PCI-ECL-II. See the Switch and Status section for FLASH
revision information.

Revision 3 is the current fab for PCI-ECL-II. 10-2011-0103 is the complete fab number.

 Embedded Solutions Page 15 of 56

Programming
PCI-NECL2-RTN10 is tested in a Windows and Linux environment. We use our driver
to support our test software. Please consider purchasing the engineering kit for the
PCI-NECL2-RTN10; the kit comes with a cable and breakout. The Linux and Win7
drivers are included with the purchase of the board. Please specify which driver you
prefer.

The internal registers for the Xilinx are defined in the following pages.

The architecture is designed as a hierarchy with a Base and Channels. There are two
ports/channels implemented for RTN10. Port 0 has is tied to the NECL IO and is the
“active” port. port 1 has a separate memory and can be accessed. No IO is connected
to port 1 at this time.

The address maps are offsets from the base address. In the case of the Base the offset
is the system assigned memory space address. The channels are shown relative to
0x00 for the channel . The channels are offset from the base and each other as shown.

Feature Address offset Decodes
Base 0x00 19-0
Channel 0 0x50 39-0 (59-20)
Channel 1 0xF0 39-0 (99-60)

The VendorID is 0xDCBA
The CardID for RTN10 is 0x0062

The address map provided is for the local decoding performed within PCI-NECL2-
RTN10. The addresses are all offsets from a base address. The base address and
interrupt level are provided by the host.

The host system will search the PCI bus to find the assets installed during power-on
initialization and allocate memory and interrupt resources.

Once the initialization process has occurred and the system has assigned an address
range to PCI-NECL2-RTN10, the software will need to determine what the address
space is. We refer to this address as base0 in our software.

The next step is to initialize the PCI-NECL2-RTN10. The local Xilinx registers need to
be configured. Please refer to the included SW for the initialization sequences.

 Embedded Solutions Page 16 of 56

Address Map
Base Addresses
RTN10_BASE_PLL 0x00000000 // 0 Base control register
RTN10_BASE_SWITCH 0x00000004 // 1 Switch, Xilinx Revision, Design
Number
RTN10_BASE_STATUS 0x00000008 // 2 Base Status
RTN10_BASE_GPIO_DIR 0x00000010 // 4 GPIO Direction register
RTN10_BASE_GPIO_DATA 0x00000014 // 5 GPIO Data register
RTN10_BASE_GPIO_IO 0x00000018 // 6 GPIO Data in: read only

FIGURE 5 PCI-NECL2-RTN10 XILINX BASE ADDRESS MAP

Channel Addresses
RTN10_CHAN_CNTRL 0x00000000 // 0 General Control Register
RTN10_CHAN_STATUS 0x00000004 // 1 Interrupt Status Port Read Only
RTN10_CHAN_INT_CLEAR 0x00000004 // 1 Interrupt Clear Port Write Only
RTN10_CHAN_WR_DMA_PNTR 0x00000008 // 2 TX Wr DMA Port physical PCI address
register
RTN10_CHAN_TX_FIFO_COUNT 0x00000008 // 2 TX FIFO data count – read only
RTN10_CHAN_RD_DMA_PNTR 0x0000000C // 3 RX Read DMA Port Physical PCI
address reg
RTN10_CHAN_RX_FIFO_CNT 0x0000000C // 3 RX FIFO data count - read
RTN10_CHAN_FIFO 0x00000010 // 4 Single Word Access port for TX, RX
FIFO
RTN10_CHAN_TX_AMT_LVL 0x00000014 // 5 TX almost empty level register R/W
RTN10_CHAN_RX_AFL_LVL 0x00000018 // 6 RX Almost Full level register R/W
RTN10_CHAN_TX 0x0000001C // 7 TX Control Register R/W

RTN10_CHAN_TX_READY_REG 0x0000002C // 11 Num of bytes req. in final FIFO
before TX

RTN10_CHAN_RX 0x00000034 // 13 RX Control Register R/W

RTN10_CHAN_RX_MEM_A 0x00000050 // 20 Receive address A
RTN10_CHAN_TX_MEM_A 0x00000054 // 21 Transmit address A
RTN10_CHAN_SET_MEM 0x00000058 // 22 Spare – reserved for direct memory
set
RTN10_CHAN_RX_MEM_B 0x0000005C // 23 Receive address B
RTN10_CHAN_TX_MEM_B 0x00000060 // 24 Transmit address B
RTN10_CHAN_RX_MEM_C 0x00000064 // 25 Receive address C
RTN10_CHAN_TX_MEM_C 0x00000068 // 26 Transmit address C
RTN10_CHAN_RX_MEM_D 0x0000006C // 27 Receive address D
RTN10_CHAN_TX_MEM_D 0x00000070 // 28 Transmit address D
RTN10_CHAN_RX_LOOP_CNT 0x00000074 // 29 Receive Body Loop Count 7-0
RTN10_CHAN_TX_LOOP_CNT 0x00000078 // 30 Transmit Body Loop Count 7-0
RTN10_CHAN_RX_SDRAM_CMD 0x0000007C // 31 Receive SDRAM Control Register 7-0
RTN10_CHAN_TX_SDRAM_CMD 0x00000080 // 32 Transmit SDRAM Control Register 7-0

FIGURE 6 PCI-NECL2-RTN10 XILINX CHANNEL ADDRESS MAP

 Embedded Solutions Page 17 of 56

Programming

Programming the PCI-NECL2-RTN10 requires only the ability to read and write data in
the host's PCI space.

Once the initialization process has occurred, and the system has assigned addresses to
the PCI-NECL2-RTN10 card the software will need to determine what the address
space is for the PCI interface [BAR0]. The offsets in the address tables are relative to
the system assigned BAR0 base address.

The next step is to initialize PCI-NECL2-RTN10. The PLL will need to be programmed
to use the loop-back function. The Cypress CyberClocks software can be used to
create new .JED files if desired. PLLA should be set to the transmit reference
frequency output by the transmitter.

The driver comes with a .JED file prepared. The driver has a utility to load the PLL and
read back. The reference application software has an example of the use of PLL
programming. The reference application software also includes XLATE.c which
converts the .JED file from the CyberClocks tool to an array that can be programmed
into the PLL.

For Windows™ and Linux systems the Dynamic Drivers can be used. The driver will
take care of finding the hardware and provide an easy to use mechanism to program
the hardware. The Driver comes with reference software showing how to use the card
and reference frequency files to allow the user to duplicate the test set-up used in
manufacturing at Dynamic Engineering. Using simple, known to work routines is a good
way to get acquainted with new hardware.

To use the RTN10 specific functions the Channel Control, and PLL interface plus DMA
will need to be programmed. To use DMA, memory space from the system should be
allocated and the link list stored into memory. The location of the link list is written to
RTN10 to start the DMA. Please refer to the Burst IN and Burst Out register
discussions.

DMA should be set-up before starting the channel port function. For transmission this
will result in the FIFO being full or close to it when the transfer is started or at least the
Packet loaded if shorter than the FIFO size. To further facilitate continuous
transmission the Ready Level is programmed to the number of LW desired to be in the
Output FIFO before starting up. This allows the Transmitter to be enabled and start at
the programmed level automatically.

 Embedded Solutions Page 18 of 56

For reception it means that the FIFO is under HW control and the delay from starting
reception to starting DMA won’t cause an overflow condition.

DMA can be programmed with a specific length. The length can be as long as you want
within standard memory limitations. At the end of the DMA transfer the Host will receive
an interrupt. With non-blocking DMA the application will be told how many bytes were
transferred. With blocking the thread will wait for the programmed amount to be
available in host memory before providing the interrupt. The receiver can be stopped
and the FIFO reset to clear out any extra data captured.

For on-the-fly processing multiple shorter DMA segments can be programmed; at the
interrupt restart DMA to point at the alternate segment to allow processing on the
previous one. This technique is sometimes referred to as “ping-pong”.

Please see the channel control register bit maps for more information.

 Embedded Solutions Page 19 of 56

Register Definitions - Base
RTN10_BASE_PLL
[0x0000 Main Control Register Port read/write]
DATA BIT DESCRIPTION

31-21 spare
20 bit 19 read-back of pll_dat register bit
19 pll_dat [write to PLL, read-back from PLL]
18 pll_s2
17 pll_sclk
16 pll_en
15 ResetInt
14-1 spare
0 BigEndianDma

FIGURE 7 PCI-NECL2-RTN10 BASE CONTROL REGISTER

This is the base control register for RTN10. The features common to all channels are
controlled from this port. Unused bits are reserved for additional new features. Unused
bits should be programmed ‘0’ to allow for future commonality.

BigEndianDma : ‘0’ disables this option. ‘1’ enables this option. When operating with a
Big Endian platform and using PCI accesses DMA can have challenges. The register
accesses directly over the PCI bus are usually taken care of automatically with byte
swapping within the CPU or PCI interface on the CPU. DMA data is written to or read
from the local memory and is not swapped. The direct read/write from memory ends up
with scrambled data [relative to little endian definitions]. Setting this bit will byte
reverse the data for the DMA path into the Tx and out of the Rx FIFO’s only. Register
accesses are not affected.

31-24, 23-16, 15-8, 7-0 ó 7-0, 15-8, 23-16, 31-24 byte swapping pattern implemented.

ResetInt is combined with the system reset to create an internal reset. Setting this bit
‘1’ will cause a board level reset with all features except the PCI core, base control
register, and certain clocking assets. Default and operational setting is ‘0’.

pll_en: When this bit is set to a one, the signals used to program and read the PLL are
enabled.

pll_sclk/pll_dat : These signals are used to program the PLL over the I2C serial
interface. Sclk is always an output whereas Sdata is bi-directional. This register is

 Embedded Solutions Page 20 of 56

where the Sdata output value is specified or read-back.

pll_s2: This is an additional control line to the PLL that can be used to select additional
pre-programmed frequencies. Set to ‘0’ for most applications.

The PLL is programmed with the output file generated by the Cypress programming
tool. [CY3672 R3.01 Programming Kit or CyberClocks R3.20.00 Cypress may update
the revision from time to time.] The .JED file is used by the Dynamic Driver to program
the PLL. Programming the PLL is fairly involved and beyond the scope of this manual.
For clients writing their own drivers it is suggested to get the Engineering Kit for this
board including software, and to use the translation and programming files ported to
your environment. This procedure will save you a lot of time. For those who want to do
it themselves the Cypress PLL in use is the 22393. The output file from the Cypress tool
can be passed directly to the Dynamic Driver [Linux or Windows] and used to program
the PLL without user intervention. The reference frequency for the PLL is 50 MHz.

 Embedded Solutions Page 21 of 56

RTN10_BASE_SWITCH
[$04 Switch and Design number port read only]
DATA BIT DESCRIPTION

31-24 Design Revision
23-16 Design ID
15-8 PCI Core Revision
7-0 DIP switch

FIGURE 8 PCI-NECL2-RTN10 ID AND SWITCH BIT MAP

The DIP Switch is labeled for bit number and ‘1’ ‘0’ in the silk screen. The DIP Switch
can be read from this port and used to determine which PCI-NECL2-RTN10 physical
card matches each PCI address assigned in a system with multiple cards installed.
The DIPswitch can also be used for other purposes – software revision etc. The switch
shown would read back 0x12.

The Design ID and Revision are defined by a 16 bit field allowing for 256 designs and
256 revisions of each. The RTN10 design is 0x03 the current revision is 0x03.

The PCI revision is updated in HW to match the design revision. The board ID will be
updated for major changes to allow drivers to differentiate between revisions and
applications.

1

7 0
0

 Embedded Solutions Page 22 of 56

RTN10_BASE_STATUS
[$08 Board level Status Port read only]
DATA BIT DESCRIPTION

31-21 set to ‘0
20 SDRAM Clock Locked
19-17 set to ‘0
16 PLLA Clock Locked
7-2 set to ‘0’, reserved for additional channels
1 Unmasked Ch1 Interrupt
0 Unmasked Ch0 Interrupt

FIGURE 9 PCI-NECL2-RTN10 STATUS PORT BIT MAP

Channel Interrupt – The local interrupt status from the channel. Each channel can
have different interrupt sources. DMA Write, DMA Read , IntForce or TX/RX request
are typical sources. Polling can be accomplished using the channel status register and
leaving the channel interrupt disabled.

The Clock Locked status when ‘1’ indicate the corresponding DCM is in lock with the
clock and can be used. SW should check this status before proceeding. The DCM’s
have logic to cause reacquisition of the clock should lock not be achieved. In most
cases the status will be set immediately after reset for the SDRAM. The PLLA status
will require the PLL to be programmed, a delay for the PLL to lock externally, and then
for the local DCM to achieve lock. 10 mS for the PLL delay worst case after changing
frequencies. An additonal 1 mS for the internal DCM.

Please note: the power up sequence should be to discover the card, initialize at the
base level – program PLL, wait for lock in Base Status etc. Then check lock status in
the channel and potentially check the frequency too. Once the channel is locked to the
external clock proceed with initialization of the transmitter.

 Embedded Solutions Page 23 of 56

RTN10_BASE_GPIO_DIR
[$10 Board level GPIO Direction Register]
 DATA BIT DESCRIPTION

 31-16 undefined
 15-0 ‘1’ = TX, ‘0’ = RX 11-0 tied to GPIO

FIGURE 10 PCI-NECL2-RTN10 GPIO DIRECTION BIT MAP

The GPIO port consists of 12 TTL programmable IO. The IO control are register based
and independent. Each IO can be enabled for transmit, or disabled for receive modes.

The IO can [as a bank] be tied to 3.3V or 5V. If set to 5V the IO will “float” at 5V unless
the transmitter is enabled on the board or the “other end” is driving the cable. When the
transmitter is enabled, the IO level will be near 3.3V or ground depending on the
register IO bit definition. The 3.3V level comes from the 5V tolerant IO being driven with
a 3.3V device. For seamless transitions the 3.3V reference is recommended [RTN10
selection] for true 5V operation the 5V high can be obtained with the output disabled,
and the 0V level reached with the output enabled and defined as a low.

 Embedded Solutions Page 24 of 56

RTN10_BASE_GPIO_DATA
[$14 Board level GPIO Data Register]
 DATA BIT DESCRIPTION

 31-16 undefined
 15-0 GPIO Output Data [11-0]

FIGURE 11 PCI-NECL2-RTN10 GPIO OUTPUT DATA BIT MAP

The GPIO port consists of 12 TTL programmable IO. The lower 12 bits correspond to
the 12 port bits. When the transmitter is enabled with the corresponding Direction bit,
the definition from this register will be driven onto the IO line.

Read-back provides the register contents – not necessarily the same as the IO
definition as that can be affected by the external device.

 RTN10_BASE_GPIO_IO
[$18 Board level GPIO Input Register]

 DATA BIT DESCRIPTION

 31-16 undefined
 15-0 GPIO Input Data [11-0]

FIGURE 12 PCI-NECL2-RTN10 GPIO INPUT DATA BIT MAP

This port is read-only and returns the state of the TTL IO. If an external device is not
connected the value will match the Output Data register if the direction bits are set. If
an external device is connected the IO will match the IO and may not match the internal
register definition.

 Embedded Solutions Page 25 of 56

Register Definitions – Channel
The RTN10 design has 1 active channel and 1 passive channel. The basic control
signals are the same for the channel base, channel status, FIFO and DMA interfaces
across multiple designs.

Notes:
The offsets shown are relative to the channel base address not the card base address.

RTN10_CHAN_CNTRL
[0x0] Channel Control Register (read/write)

Channel Control Register

 Data Bit Description
 31-19 spare
 18 ByEnChRx
 17 ByEnChTx
 16 Init SDRAM
 15-10 Spare
 9 RstTxRefDcm
 8 OutUrgent
 7 InUrgent
 6 Read DMA Interrupt Enable
 5 Write DMA Interrupt Enable
 4 Force Interrupt
 3 Channel Interrupt Enable
 2 Bypass
 1 Receive FIFO Reset
 0 Transmit FIFO Reset

FIGURE 13 PCI-NECL2-RTN10 CHANNEL CONTROL REGISTER

FIFO Transmitter/Receiver Reset: When set to a one, the transmit and/or receive
FIFO’s will be reset. When these bits are zero, normal FIFO operation is enabled. In
addition the Transmit and Receive State Machines are also reset. The receive side is
referenced to an internal 200 MHz clock. The transmit side is referenced to the
received TX clock. The Transmit FIFO Reset must be applied once the TX reference
clock is present.

 Embedded Solutions Page 26 of 56

RstTxRefDcm when set ‘1’ will reset the DCM monitoring circuit which will in turn cause
a requisition of the Tx Reference Clock. Occasionally when the frequency changes the
DCM may not achieve lock. Hardware automatically will attempt to recycle through and
obtain lock. This bit can be used to force the DCM to reacquire for the unlikely situation
of the DCM staying in lock when the signal has changed. Use when the Tx Frequency
determined from the Tx Reference Clock Count port does not match the expected
frequency of update.

Write/Read DMA Interrupt Enable: These two bits, when set to one, enable the
interrupts for DMA writes and reads respectively.

Channel Interrupt Enable: When this bit is set to a one, all enabled interrupts (except
the DMA interrupts) will be gated through to the PCI interface level of the design; when
this bit is a zero, the interrupts can be used for status without interrupting the host. The
channel interrupt enable is for the channel level interrupt sources only.

Force Interrupt: When this bit is set to a one, a system interrupt will occur provided the
Channel Interrupt enable is set. This is useful for interrupt testing.

InUrgent / OutUrgent when set causes the DMA request to have higher priority under
certain circumstances. Basically when the TX FIFO is almost empty and InUrgent is set
the TX DMA will have higher priority than it would otherwise get. Similarly if the RX
FIFO is almost full and OutUrgent is set the read DMA will have higher priority. The
purpose is to allow software some control over how DMA requests are processed and to
allow for a higher rate channel to have a higher priority over other lower rate channels.

ByPass when set allows the FIFO to be used in a loop-back mode internal to the device.
A separate state-machine is enabled when ByPass is set and the TX and RX are not
enabled. The state-machine checks the TX and RX FIFO’s and when not empty on the
TX side and not Full on the RX side moves data between them. Writing to the TX FIFO
allows reading back from the RX side. An example of this is included in the Driver
reference software.

Init SDRAM when set causes the SDRAM controller to initialize the SDRAM. Initializing
SDRAM is a specific sequence of steps the HW goes through to enable SDRAM
operation. The bit is self clearing. Read-back can be used to determine if the
initialization process has completed. The sequence is pretty rapid – the bit may be
cleared by the time the SW returns to read it.

When Init SDRAM is set, the RTN10_CHAN_RX_MEM_A register is used to set the
SDRAM parameters after which the register is returned to normal use. This register
must be initialized with the SDRAM parameters prior to the “Init” bit being set.

 Embedded Solutions Page 27 of 56

Once running the init bit will not have effect on the SDRAM unless the SDRAM
controller is reset – returned to the idle state. The FIFO resets can be used for this
purpose.

Normally a once per power up cycle operation.

ByEnChTx and ByEnChRx when set enable the bypass data movers to operate for the
Tx or Rx channels respectively.

The main memory is organized with 4 ports, the SDRAM “in the middle” and FIFO’s on
either side for RX or TX operation. SW causes data to move to the SDRAM DMA TX
FIFO, data is automatically moved from the SDRAM DMA TX FIFO to the SDRAM or to
the SDRAM IO TX FIFO directly. When the Bypass bit is set, the data is moved directly
from FIFO to FIFO avoiding the SDRAM. This will improve latency [slightly] but remove
the SDRAM memory from the path. The input and output FIFO’s for the TX and RX
direction are 512 x 32. Removing the SDRAM means a 1Kx32 FIFO between the PCI
bus and the TX state machine or the RX state machine and the PCI bus.

The RX and TX state-machines have additional memory [16Kx32] for the RTN10
design.

When the bypass bits are disabled the data flows through the SDRAM allowing for a
much larger storage space. The total memory is 8Mx32 and can be partitioned with
SW. Please refer to the MEM registers for more information.

 Embedded Solutions Page 28 of 56

RTN10_CHAN _STATUS
[0x4] Channel Status Read/Clear Latch Write Port

Channel Status Register

 Data Bit Description
 31 Interrupt Status
 30 LocalInt
 29-25 Spare
 24 RefTxClockLock
 23 BurstInIdle
 22 BurstOutIdle
 21 TxIdleState
 20 RxIdleState
 19 RxFifoOverFlowLat
 18 TxUDoneLat
 17 RXUDoneLat
 16 TxCompletedLat
 15 Read DMA Interrupt Occurred
 14 Write DMA Interrupt Occurred
 13 Read DMA Error Occurred
 12 Write DMA Error Occurred
 11 RxAFLvlIntLat
 10 TxAELvlIntLat
 9 RxAflInt
 8 TxAmtInt
 7 spare
 6 Rx FIFO Full
 5 Rx FIFO Almost Full
 4 Rx FIFO Empty
 3 Spare
 2 Tx FIFO Full
 1 Tx FIFO Almost Empty
 0 Tx FIFO Empty

FIGURE 14 PCI-NECL2-RTN10 CHANNEL STATUS PORT

TX FIFO Status: Tx FIFO Empty is set when the entire allocated chain is empty. When
‘0’ there is at least one data point within the chain. TX DMA FIFO[511x32] =>
SDRAM[programmable] => SDRAM TX IO FIFO[511x32] => TX IO FIFO[16Kx32].

Tx Almost Empty when set [‘1’] means there are fewer LW’s within the programmed TX

 Embedded Solutions Page 29 of 56

memory chain than the Programmed Almost Empty level. Please note: this is a less
than comparison. ‘0’ means there are more than or equal to the programmed level
within the memory chain.

Tx FIFO Full is set when the Tx DMA FIFO is full. ‘0’ means there is at least 1 location
open.

RX FIFO Status: RX DMA FIFO[511x32] <= SDRAM[programmable] <= SDRAM RX IO
FIFO[511x32] <= RX IO FIFO[16Kx32].

Rx FIFO Empty is set when the Rx DMA FIFO is empty. When ‘0’ there is at least one
data point within the Rx DMA FIFO.

Rx Almost Full when set [‘1’] means there are more LW’s within the programmed RX
memory chain than the Programmed Almost Full level. Please note: this is a
greater/equal comparison. ‘0’ means there are less than the programmed level within
the memory chain.

Rx FIFO Full is set when the Rx DMA FIFO is full. ‘0’ means there is at least 1 location
open.

Please note with the Rx side status; the status reflects the state of the FIFO and does
not take the 4 deep pipeline into account. For example the FIFO may be empty and
there may be valid data within the pipeline. The data count with the combined FIFO and
pipeline value and can also be used for read size control. [see later in register
descriptions]

RxFifoOverFlowLat: When a one is read, an error has been detected. This will occur if
FIFO is full when the loader function tries to write to it. A zero indicates that no error
has occurred. This bit is latched and can be cleared by writing back to the Status
register with a one in the appropriate bit position.

Write/Read DMA Error Occurred: When a one is read, a write or read DMA error has
been detected. This will occur if there is a target or master abort or if the direction bit in
the next pointer of one of the chaining descriptors is incorrect. A zero indicates that no
write or read DMA error has occurred. These bits are latched and can be cleared by
writing back to the Status register with a one in the appropriate bit position.

Write/Read DMA Interrupt Occurred: When a one is read, a write/read DMA interrupt is
latched. This indicates that the scatter-gather list for the current write or read DMA has
completed, but the associated interrupt has yet to be processed. A zero indicates that
no write or read DMA interrupt is pending.

 Embedded Solutions Page 30 of 56

Tx IDLE is set when the state-machine is in the idle state. When lower clock rates are
used it may take a while to clean-up and return to the idle state. If SW has cleared the
start bit to terminate the data transfer; SW can use the IDLE bit to determine when the
HW has completed its task and returned.

Rx IDLE is set when the state-machine is in the idle state. When lower clock rates are
used it may take a while to clean-up and return to the idle state. If SW has cleared the
start bit to terminate the transfer; SW can use the IDLE bit to determine when the HW
has completed its task and returned. For RTN10 this is the inverted DataEnable –
when ‘0’ data is being received and when ‘1’ no data is being received.

BO and BI Idle are Burst Out and Burst In IDLE state status for the Receive and
Transmit DMA actions. The bits will be 1 when in the IDLE state and 0 when
processing a DMA. A new DMA should not be launched until the State machine is back
in the IDLE state. Please note that the direction implied in the name has to do with the
DMA direction – Burst data into the card for Transmit and burst data out of the card for
Receive.

Local Interrupt is the masked combined interrupt status for the channel not including
DMA. The status is before the master interrupt enable for the channel.

Interrupt Status is the combined Local Interrupt with DMA and the master interrupt
enable. If this bit is set this channel has a pending interrupt request.

RxAFLvlIntLat: When set the Rx Data FIFO has become almost Full based on the
programmed count. The software can do a looped read or use DMA to retrieve the
programmed count amount of data from the storage FIFO. The signal is latched and
can be cleared via write back with this bit set. The signal can be used to generate an
interrupt if desired.

TxAELvlIntLat: When set the Tx Data FIFO has become almost Empty based on the
programmed count. The software can do a looped write or use DMA to load the
programmed count amount of data to the storage FIFO. The signal is latched and can
be cleared via write back with this bit set. The signal can be used to generate an
interrupt if desired.

TxUDoneLat, RxUDoneLat should be treated as “don’t care” for STE3. These bits apply
to the retransmit modes designed into the SDRAM controller and not used for STE3.

TxCompletedLat When set ‘1’ indicates the SM has completed a transfer – the FIFO
has gone empty and the data transferred. This is a sticky bit cleared by writing back
with the same bit set. This bit is anded with the transmit interrupt enable to create an
interrupt request if desired.

 Embedded Solutions Page 31 of 56

RefTxClockLock when ‘1’ indicates the DCM used to generate the internal transmit
clocks has achieved locked status with the received reference clock. This bit must be
set prior to resetting the transmit FIFO as part of initialization.

 Embedded Solutions Page 32 of 56

RTN10_CHAN_WR_DMA_PNTR
[0x8] Write DMA Pointer (write only)
BurstIn DMA Pointer Address Register

 Data Bit Description
 31-2 First Chaining Descriptor Physical Address
 1 direction [0]
 0 end of chain

FIGURE 15 PCI-NECL2-RTN10 WRITE DMA POINTER REGISTER

This write-only port is used to initiate a scatter-gather write [TX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer containing the data
to read into the device, the second is the length in bytes of that block, and the third is
the address of the next chaining descriptor in the list of buffer memory blocks. This
process is continued until the end-of-chain bit in one of the next pointer values read
indicates that it is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘0’ for Burst In DMA in all chaining descriptor
locations.

 Embedded Solutions Page 33 of 56

RTN10_CHAN_TX_FIFO_COUNT
[0x8] TX FIFO data count (read only)
TX FIFO Data Count Port

 Data Bit Description
 31-0 TX Data Words Stored

FIGURE 16 PCI-NECL2-RTN10 TX FIFO DATA COUNT PORT

This read-only register port reports the number of 32-bit data words in the Transmit
FIFO. This design has a variable number of locations possible due to the
programmable ranges for the TX and RX functions. 0 extended to a 32 bit value. The
SDRAM module contains FIFO’s with 32/16 and 16/32 size ports. Due to the way Xilinx
FPGA FIFO’s are implemented the x16 count can be ½ word different from the 32 bit
count. Since the SDRAM is x16 the three counts are added, synchronized and shifted
to present the x32 count to the system. The count read may be 1 fewer than actually
stored in memory under certain conditions.

Maximum TX memory is 511[SDRAM DMA FIFO] + 511 [SDRAM IO FIFO] + 8M if all of
the SDRAM is allocated to the TX process + 16K-1 [TX IO FIFO]

 Embedded Solutions Page 34 of 56

RTN10_CHAN_RD_DMA_PNTR
[0xC] Read DMA Pointer (write only)
BurstIn DMA Pointer Address Register

 Data Bit Description
 31-2 First Chaining Descriptor Physical Address
 1 direction [1]
 0 end of chain

FIGURE 17 PCI-NECL2-RTN10 READ DMA POINTER REGISTER

This write-only port is used to initiate a scatter-gather read [RX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer to write data from
the device to, the second is the length in bytes of that block, and the third is the address
of the next chaining descriptor in the list of buffer memory blocks. This process is
continued until the end-of-chain bit in one of the next pointer values read indicates that it
is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:

1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘1’ for Burst Out DMA in all chaining descriptor
locations.

 Embedded Solutions Page 35 of 56

RTN10_CHAN_RX_FIFO_COUNT
[0xC] RX FIFO data count (read only)
RX FIFO Data Count Port

 Data Bit Description
 31-0 RX Data Words Stored

FIGURE 18 PCI-NECL2-RTN10 TX FIFO DATA COUNT PORT

This read-only register port reports the number of 32-bit data words in the Receive
FIFO. This design has a variable number of locations possible due to the
programmable ranges for the TX and RX functions. 0 extended to a 32 bit value. The
SDRAM module contains FIFO’s with 32/16 and 16/32 size ports. Due to the way Xilinx
FPGA FIFO’s are implemented the x16 count can be ½ word different from the 32 bit
count. Since the SDRAM is x16, the three counts are added, synchronized and shifted
to present the x32 count to the system. The count read may be 1 fewer than actually
stored in memory under certain conditions.

Maximum RX memory is 511[SDRAM DMA FIFO] + 511 [SDRAM IO FIFO] + 8M +
DMA Pipeline [4] if all of the SDRAM is allocated to the RX process + 16K-1[Rx IO
FIFO]

 Embedded Solutions Page 36 of 56

RTN10_CHAN_FIFO
[0x10] Write TX/Read RX FIFO Port
RX and TX FIFO Port

 Data Bit Description
 31-0 FIFO data word

FIGURE 19 PCI-NECL2-RTN10 RX/TX FIFO PORT

This port is used to make single-word accesses to and from the FIFO. Data read from
this port will no longer be available for DMA transfers. Writing to the port loads the Tx
FIFO, Reading unloads the Rx FIFO.

RTN10_CHAN_TX_AMT_LVL
[0x14] Tx almost-empty level (read/write)
Tx Almost-Full Level Register

 Data Bit Description
 31-0 Tx FIFO Almost-Empty Level

FIGURE 20 PCI-NECL2-RTN10 TX ALMOST EMPTY LEVEL REGISTER

This read/write port accesses the almost-empty level register. When the number of
data words in the transmit data FIFO is less than than this value, the almost-empty
status bit will be set. The register is R/W for 32 bits. The mask is valid for a size
matching the depth of the FIFO. The count is based on the total memory allocated in
the SDRAM memory chain.

RTN10_CHAN_RX_AFL_LVL
[0x18] Rx almost-full (read/write)
Rx Almost-Full Level Register

 Data Bit Description
 31-0 Rx FIFO Almost-Full Level

FIGURE 21 PCI-NECL2-RTN10 RX ALMOST FULL LEVEL REGISTER

This read/write port accesses the almost-full level register. When the number of data
words in the receive data FIFO is equal or greater than this value, the almost-full status
bit will be set. The register is R/W for 32 bits. The mask is valid for a size matching the
depth of the FIFO. The count is based on the total memory allocated in the SDRAM
memory chain. The level includes the pipeline for an additional 4 locations.

 Embedded Solutions Page 37 of 56

RTN10_CHAN_TX
[0x1C] Channel Transmit Control Register (read/write)
Channel TX Control Register

 Data Bit Description

 31-18 Spare
 17 ClkInv
 16-10 Spare
 9 EnTxUnLoad
 8 EnTxLoad
 7 spare
 6 TxFifoAmtIntEnLvl
 5 spare
 4 TxUnFlIntEn
 3 TxAEIntEn
 2 TxIntEn
 1 spare
 0 TxEn

FIGURE 22 PCI-NECL2-RTN10 CHANNEL TRANSMIT CONTROL REGISTER

Set spare bits to ‘0’.

TxEn when set causes the Transmit State Machine to begin operation. When the
Transmitter state-machine has determined that Data is in the Transmit FIFO, and
sufficient data is available transmission will begin. Clearing TxEn will return the State
Machine to the idle state. Please note: for the case where transmission has started,
and data in the local FIFO [IO] is not present but data is present in the SDRAM chain,
transmission will restart without waiting for the READY threshold.

TxIntEn when set enables the transmitter to generate an interrupt when the transmitter
has run dry and returned to the idle state. Please note the enable is not self clearing,
adding data to the FIFO will retrigger the state machine unless software removes the
enable. The IDLE state will not be reached unless the entire chain is emptied.

TxAEIntEn when set enables the interrupt based on the TX FIFO Almost Empty flag.
When the interrupt occurs a programmable amount of data can be stored into the FIFO
making for an efficient DMA or burst of writes to load the FIFO.

EnTxLoad and EnTxUnLoad when set enable the SDRAM state-machine to operate in
the TX section of SDRAM. UnLoad is the function of taking data from the SDRAM and
moving to the IO FIFO. Load is the function of taking data from the DMA FIFO and

 Embedded Solutions Page 38 of 56

writing to the SDRAM. When using the retransmit modes in memory the unload
function can be left disabled until the pattern is loaded and then enabled. For FIFO
mode both enables can be set together.

ClkInv when set inverts the transmit reference clock to have the data stable on the
rising edge. Default is stable on the falling edge.

RTN10_CHAN_TX_READY_REG
[0x2C] Tx hold off (read/write)
Rx Almost-Full Level Register

 Data Bit Description
 31-0 Hold Off LW Count

FIGURE 23 PCI-NECL2-RTN10 TX HOLD OFF REGISTER

This read/write port is used to set a minimum threshold of data to be in the TX State-
machine local FIFO before the State-Machine starts transmission. By programming this
register to a non-zero amount the start and DMA start are decoupled somewhat.

Setting the level to 100 LW, and the TX enabled before starting the DMA function will
allow 100 LW to accumulate in the IO local buffer before enable is set and data is
transmitted. This gives the DMA function a head start and will allow the data transfer to
be done in one contiguous transfer. Your system may require larger or smaller
settings. Only the TX IO FIFO is used to compare against the programmed count [
equal or greater] => the maximum is 16K-1. Do not set for more than the intended data
size. Remember this is in LW; if you are thinking in bytes, divide by 4.

If having the enable set and disabled a few times during start-up does not affect your
application the count can be set to 0. During DMA start-up the system may break the
first segments into small transfers causing the FIFO to only load 1 LW [4 bytes] several
times before the DMA really gets going. This is an OS dependent phenomenon.

 Embedded Solutions Page 39 of 56

RTN10_CHAN_RX
[0x34] Channel RX Control Register (read/write)
Channel Control Register

 Data Bit Description
 17 ClkInv
 16 FrameIgnore
 15-10 spare
 9 EnRxUnLoad
 8 EnRxLoad
 7 spare
 6 RxFifoAflIntEnLvl
 5 spare
 4 RxFifoOvFlIntEn
 3 RxFifoAFIntEn
 2 RxIntEn
 1 spare
 0 RxEn

FIGURE 24 PCI-NECL2-RTN10 CHANNEL RX CONTROL REGISTER

RxEn when set causes the Rx State Machine to begin operation. The receiver uses the
free running reference clock and looks for the enable signal to be in the active state
when the falling edge of the clock is received. With each active clock [falling edge and
enable set] data is captured [byte] and stored into a local FIFO. The data is converted
to 32 bit words. The data is stored LSB first MSB last. Data is continued to be captured
until RxEn is disabled [‘0’]. When disabled the receiver is disabled and the pointer for
the first byte captured returned to the 00 location.

RxIntEn when set enables the completion of the Rx SDRAM loop to cause an interrupt.
Unused in RTN10. Set to ‘0’.

RxFifoAFIntEn when set enables the interrupt based on the Rx FIFO Almost Full flag.
When the interrupt occurs a programmable amount of data can be read from the FIFO
making for an efficient DMA read or burst of reads to unload the FIFO. Please see the
programmable definition for the Almost Full Flag.

RxFifoOvFlIEn when set enables the interrupt based on the Rx FIFO OverFlow
condition. When the State-machine writes to the FIFO the status is tested. If the FIFO
is full when time to write the OverFlow status is set. If the interrupt is enabled the status
is gated out to drive the interrupt request to the host.

The local IO FIFO data is transferred to the SDRAM RX IO FIFO automatically. For the

 Embedded Solutions Page 40 of 56

full condition to happen the entire defined “FIFO” path would need to be filled.

EnRxLoad and EnRxUnLoad when set enable the SDRAM state-machine to operate in
the RX section of SDRAM. UnLoad is the function of taking data from the SDRAM and
moving to the DMA FIFO. Load is the function of taking data from the IO FIFO and
writing to the SDRAM. When using the retransmit modes in memory the unload
function can be left disabled until the pattern is loaded and then enabled. For FIFO
mode both enables can be set together.

While it is unlikely that the RX retransmit function would be used, it can be used as a
self generating data stream for testing system operation. Due to schedule
requirements this function has not been tested for RTN10.

FrameIgnore When set causes the receiver to ignore the received enable signal and
only qualify data with the received clock. Default is to use the framing to prevent
capture of unwanted data.

ClkInv when set causes the receiver to use the rising edge to capture data. Default is
to use the falling edge to capture data.

Rx and Tx Memory Definitions. The SDRAM is a block of memory comprised of
banks and pages. The hardware flattens the memory into one large page – that is the
handling of the memory is hidden from the SW definitions. The SW can partition the
memory into an RX and a TX segment or one large RX or TX segment or neither
depending on the settings for the bypass, Load and UnLoad, plus memory address
definitions.

The next set of registers is used to set the addresses to be used for the memory. The
addresses are inclusive. For example setting Mem A = 0x00 will start the memory at
0x00. Setting MemD 0 0x10 will use address 0x10 as the last address in the segment.

For “normal” bidirectional operation the start, middle,and end of memory would be used
to separate the Rx and Tx spaces.

Tx = 0x000000 ó 0x7FFFFF : MemA = 0x000000, MemD = 0x7FFFFF
Rx = 0x800000 ó 0xFFFFFF : MemA = 0x800000, MemD = 0xFFFFFF

Setting the control bits for FIFO operation will result in two large FIFO’s with 1/2 the
memory allocated to each. Asymmetrical memory allocation is fine too.

Each of the locations is 16 bits or 2 bytes => 16 Mbytes per FIFO in the example case.

 Embedded Solutions Page 41 of 56

RTN10_CHAN_RX_MEM_A
[0x50] Rx Memory A offset definition (read/write)
Rx Memory Definition

 Data Bit Description
 31-0 RX Memory A

FIGURE 25 PCI-NECL2-RTN10 RX MEMORY A REGISTER

The primary use of this port is to set the initial address of the RX segment of the
SDRAM memory. The address is a word boundary and should be set to a LW boundary
0,4,8 etc. This is channel 0 within the SDRAM module.

For initialization the register should be set to x37 for loading to the SDRAM control
register. Once initialization is complete the register should be set to the memory
definition prior to enabling in the RX state-machine control register. See Base control
register for initialization control.

RTN10_CHAN_TX_MEM_A
[0x54] Tx Memory A offset definition (read/write)
Tx Memory Definition

 Data Bit Description
 31-0 TX Memory A

FIGURE 26 PCI-NECL2-RTN10 TX MEMORY A REGISTER

The primary use of this port is to set the initial address of the TX segment of the
SDRAM memory. The address is a word boundary and should be set to a LW boundary
0,4,8 etc. This is channel 1 within the SDRAM module.

Be sure to set the memory segments to discrete spaces, the controller does not check
for overlapping definitions and you will get “interesting” results if you try this.

 Embedded Solutions Page 42 of 56

RTN10_CHAN_SET_MEM
[0x58] Rx Memory A offset definition (read/write)
Memory Definition

 Data Bit Description
 31-0 Set Memory

FIGURE 27 PCI-NECL2-RTN10 SET MEMORY REGISTER

This port is unused in RTN10 and reserved for direct mapped memory applications.

RTN10_CHAN_RX_MEM_B
[0x5C] Rx Memory B offset definition (read/write)
Rx Memory Definition

 Data Bit Description
 31-0 RX Memory B

FIGURE 28 PCI-NECL2-RTN10 RX MEMORY B REGISTER

RTN10_CHAN_TX_MEM_B
[0x60] Tx Memory B offset definition (read/write)
Tx Memory Definition

 Data Bit Description
 31-0 TX Memory B

FIGURE 29 PCI-NECL2-RTN10 TX MEMORY B REGISTER

When operating with retransmitted data or single set data, the Memory B pointer is the
start of the body of the data. For single non-looped [FIFO] operations these registers
are not used. When in looped mode, the memory pointers start at A, increase to B,
increase to C and then loop back to B – Y times – before incrementing to D.

When operating in the looped mode it is important to enable the Load function without

A B C D
Head Body Tail

 Embedded Solutions Page 43 of 56

the UnLoad function to allow the memory to be set sequentially before being unloaded.
The memory is assumed to be loaded before the unload function is enabled. Undefined
memory could be moved to the Tx section if enabled before the memory is defined.

RTN10_CHAN_RX_MEM_C
[0x64] Rx Memory C offset definition (read/write)
Rx Memory Definition

 Data Bit Description
 31-0 RX Memory C

FIGURE 30 PCI-NECL2-RTN10 RX MEMORY C REGISTER

RTN10_CHAN_TX_MEM_C
[0x68] Tx Memory C offset definition (read/write)
Tx Memory Definition

 Data Bit Description
 31-0 TX Memory C

FIGURE 31 PCI-NECL2-RTN10 TX MEMORY C REGISTER

When operating with retransmitted data or single set data, the Memory C pointer is the
end of the body of the data. For single non-looped [FIFO] operations these registers
are not used. When in looped mode, the memory pointers start at A, increase to B,
increase to C and then loop back to B – Y times – before incrementing to D.

The segment defined by C-B can be any length within the overall definition set by D-A.

The count is set by a separate “Y” register with an 8 bit field allowing up to 255 loops of
the body per overall loop of the pattern.

The pattern can be sent once or loop back to A from D to repeat over and over.

Unused for RTN10 operation.

 Embedded Solutions Page 44 of 56

RTN10_CHAN_RX_MEM_D
[0x6C] Rx Memory D offset definition (read/write)
Rx Memory Definition

 Data Bit Description
 31-0 RX Memory D

FIGURE 32 PCI-NECL2-RTN10 RX MEMORY D REGISTER

RTN10_CHAN_TX_MEM_D
[0x70] Tx Memory D offset definition (read/write)
Tx Memory Definition

 Data Bit Description
 31-0 TX Memory D

FIGURE 33 PCI-NECL2-RTN10 TX MEMORY D REGISTER

Register D is the end of the memory segment [Rx or Tx]. The address is included in the
transmission. In FIFO mode the next address after D is A. In the retransmit modes the
next address can be A if set to indefinite or the transmission can stop once D is
reached.

It is important that the definitions for RX and TX Mem spaces are separate. The
hardware does not check if the ranges overlap etc. “Interesting” results can occur if
the Rx and Tx spaces are overlapped.

Writing with TX and unloading with RX defined the same won’t work in FIFO mode as
the counters for the amount of available data are separate and writing to the TX side
won’t create available data for the RX side. On the other hand loading to TX and then
unloading from Rx would [in theory] work with overlapped spaces. This mode has not
been tested as it does not apply to RTN10.

 Embedded Solutions Page 45 of 56

RTN10_CHAN_RX_LOOP_CNT
[0x74] Rx Memory LoopCount definition (read/write)
Rx Memory Definition

 Data Bit Description
 7-0 RX Memory Loop Count

FIGURE 34 PCI-NECL2-RTN10 RX LOOP COUNT REGISTER

RTN10_CHAN_TX_LOOP_CNT
[0x78] Tx Memory LoopCount definition (read/write)
Tx Memory Definition

 Data Bit Description
 7-0 TX Memory Loop Count

FIGURE 35 PCI-NECL2-RTN10 TX LOOP COUNT REGISTER

When operating in looped modes the Loop Count for the number of times the body is
sent is defined in these registers. Normally used in the TX side only, but defined for
both to allow for test cases and data generation. 1-255 are valid counts. Unused in
RTN10.

 Embedded Solutions Page 46 of 56

RTN10_CHAN_RX_SDRAM_CMD
[0x7C] Rx Memory SDRAM Command definition (read/write)
Rx Memory Definition

 Data Bit Description
 7-4 Spare
 3 Continuous
 2 Ymode
 1 Spare
 0 Standard /Test mode

FIGURE 36 PCI-NECL2-RTN10 RX SDRAM COMMAND REGISTER

RTN10_CHAN_TX_SDRAM_CMD
[0x80] Tx Memory LoopCount definition (read/write)
Tx Memory Definition

 Data Bit Description
 7-4 Spare
 3 Continuous
 2 Ymode
 1 Spare
 0 Standard /Test mode

FIGURE 37 PCI-NECL2-RTN10 TX SDRAM COMMAND REGISTER

Standard mode is used for FIFO and sequenced modes. Test is used for looping back
data through the SDRAM and is for factory use only. Set to ‘0’.

Ymode when set causes the Loop Count to be applied and data to be read out with a
header, body, and tail. Ymode when not set ‘0’ selects FIFO mode. Select FIFO mode
for RTN10.

Continuous mode when set causes the memory to continuously loop in the Ymode.
When in Ymode and not set the sequence is sent once. In FIFO mode the memory is
always operating in continuous mode with data continually loaded and read out.

For RTN10 set to 0x08.

 Embedded Solutions Page 47 of 56

RTN10_CHAN_TX_REF_COUNT
[0x9C] TX Reference Counter (read only)
TX FIFO Data Count Port

 Data Bit Description
 15-0 TX Reference Count

FIGURE 38 PCI-NECL2-RTN10 TX REFERENCE COUNT PORT

The Reference Clock received on ECL In 18 is tied to a DCM and redriven for use in the
transmitter. Two copies are made, one in phase and one 180 out [inverted]. Both are
used to generate the reference clock and data stream.

The DCM has a locked status bit which is provided in the channel Status Port. In
addition the in phase side of the clock is used to operate a 16 bit counter which counts
0->xFFFF, rolls over and repeats… Using the expected period of the Tx reference
clock you can calculate the rollover period and track that or a subset to see if the
received clock is operational and within frequency tolerance. Since software timed
allow for some tolerance. If the frequency is out of bounds use the DCM reset in the
channel control register to force the DCM to reaquire the signal.

 Embedded Solutions Page 48 of 56

Loop-Back
The Engineering kit uses the HDEterm100 with loop-back connections to provide a path
to test the ECL I/O. The inputs are tied directly to the outputs. Please note:
ECLIN/OUT 18 can be used to provide the external clock reference required for the
transmitter.

FROM TO

OUT0P/OUT0M IN0P/IN0M 24/74 1/51
OUT1P/OUT1M IN1P/IN1M 25/75 2/52
OUT2P/OUT2M IN2P/IN2M 26/76 3/53
OUT3P/OUT3M IN3P/IN3M 27/77 4/54
OUT4P/OUT4M IN4P/IN4M 28/78 5/55
OUT5P/OUT5M IN5P/IN5M 29/79 6/56
OUT6P/OUT6M IN6P/IN6M 30/80 7/57
OUT7P/OUT7M IN7P/IN7M 31/81 8/58
OUT8P/OUT8M IN8P/IN8M 32/82 9/59
OUT9P/OUT9M IN9P/IN9M 33/83 10/60

OUT11P/OUT11M IN11P/IN11M 35/85 12/62
OUT12P/OUT12M IN12P/IN12M 36/86 13/63
OUT13P/OUT13M IN13P/IN13M 37/87 14/64
OUT14P/OUT14M IN14P/IN14M 38/88 15/65
OUT15P/OUT15M IN15P/IN15M 39/89 16/66
OUT16P/OUT16M IN16P/IN16M 40/90 17/67
OUT17P/OUT17M IN17P/IN17M 41/91 18/68
OUT18P/OUT18M IN18P/IN18M 42/92 19/69
OUT19P/OUT19M IN19P/IN19M 43/93 20/70

TTL_0 TTL_1 45 95
TTL_2 TTL_3 46 96
TTL_4 TTL_5 47 97
TTL_6 TTL_7 48 98
TTL_8 TTL_9 49 99
TTL_10 TTL_11 50 100

 Embedded Solutions Page 49 of 56

D100 Standard Pin Assignment
The pin assignment for the PCI-ECL P1 connector.

IN0P IN0M 1 51
IN1P IN1M 2 52
IN2P IN2M 3 53
IN3P IN3M 4 54
IN4P IN4M 5 55
IN5P IN5M 6 56
IN6P IN6M 7 57
IN7P IN7M 8 58
IN8P IN8M 9 59
IN9P IN9M 10 60
IN10P IN10M 11 61
IN11P IN11M 12 62
IN12P IN12M 13 63
IN13P IN13M 14 64
IN14P IN14M 15 65
IN15P IN15M 16 66
IN16P IN16M 17 67
IN17P IN17M 18 68
IN18P IN18M 19 69
IN19P IN19M 20 70
GND GND 21 71
GND GND 22 72
GND GND 23 73
OUT0P OUT0M 24 74
OUT1P OUT1M 25 75
OUT2P OUT2M 26 76
OUT3P OUT3M 27 77
OUT4P OUT4M 28 78
OUT5P OUT5M 29 79
OUT6P OUT6M 30 80
OUT7P OUT7M 31 81
OUT8P OUT8M 32 82
OUT9P OUT9M 33 83
OUT10P OUT10M 34 84
OUT11P OUT11M 35 85
OUT12P OUT12M 36 86
OUT13P OUT13M 37 87
OUT14P OUT14M 38 88
OUT15P OUT15M 39 89
OUT16P OUT16M 40 90
OUT17P OUT17M 41 91
OUT18P OUT18M 42 92
OUT19P OUT19M 43 93
GND GND 44 94
TTL_0 TTL_1 45 95
TTL_2 TTL_3 46 96
TTL_4 TTL_5 47 97
TTL_6 TTL_7 48 98
TTL_8 TTL_9 49 99
TTL_10 TTL_11 50 100
FIGURE 39 PCI-NECL2-RTN10 STANDARD D100 PINOUT

 Embedded Solutions Page 50 of 56

Connector / Pin definition notes:

Note: IN0..19P/M and OUT0..19P/M refer to the ECL I/O.

IN7-0 are the data inputs.
IN8 is used for the Enable. Active High
IN9 is used for the reference clock in. Programmable edge stable data

OUT7-0 are the data outputs
OUT8 is used for the Enable. Active High
OUT9 is used for the TX clock reference. Programmable edge stable data.

OUT18 is available as a looped-back clock. Used for ATP testing. Single board
operation.

IN18 is the external Clock reference in. Used to generate the TX output clock [OUT9].

TTL IO are used for the GPIO port.

Undefined IO are tied to the FPGA and not utilized for RTN10.

 Embedded Solutions Page 51 of 56

Applications Guide
Interfacing
Some general interfacing guidelines are presented below. Do not hesitate to contact
the factory if you need more assistance.

ESD
Proper ESD handling procedures must be followed when handling the PCI-NECL2-
RTN10. The card is shipped in an anti-static, shielded bag. The card should remain in
the bag until ready for use. When installing the card the installer must be properly
grounded and the hardware should be on an anti-static work-station.

Start-up
Make sure that the "system" can see your hardware before trying to access it. Many
BIOS will display the PCI devices found at boot up on a "splash screen" with the
VendorID and CardId and an interrupt level. Look quickly! If the information is not
available from the BI/OS, then a third party PCI device cataloging tool will be helpful; we
use PCIView.

Watch the system grounds
All electrically connected equipment should have a fail-safe common ground that is
large enough to handle all current loads without affecting noise immunity. Power
supplies and power consuming loads should all have their own ground wires back to a
common point.

 Embedded Solutions Page 52 of 56

Construction and Reliability
PCI Modules while commercial in nature can be conceived and engineered for rugged
industrial environments. The PCI-NECL2-RTN10 is constructed out of 0.062 inch thick
high temperature ROHS compliant FR4 material.

The D100 connector has Phosphor Bronze pins with Nickel plating for durability and
Gold plating on the contact area on both plugs and receptacles. The connectors are
keyed and shrouded. The pins are rated at 1 Amp per pin, 500 insertion cycles
minimum [at a rate of 800 per hour maximum]. These connectors make consistent,
correct insertion easy and reliable.

Thermal Considerations
The PCI-NECL2-RTN10 design consists of CMOS circuits for the memory and FPGA
sections. The power dissipation due to internal circuitry is very low. The ECL buffers
may require forced-air cooling. Heavy planes help to spread the power dissipated
across the board for more effective cooling. In an enclosed space or when operating at
elevated temperatures forced air is required. Thermocouples can be used to determine
if forced air cooling is required for your application.

 Embedded Solutions Page 53 of 56

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.

http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the suspected unit is
at fault. Then call the Customer Service Department for a RETURN MATERIAL
AUTHORIZATI/ON (RMA) number. Carefully package the unit, in the original shipping
carton if this is available, and ship prepaid and insured with the RMA number clearly
written on the outside of the package. Include a return address and the telephone
number of a technical contact. For out-of-warranty repairs, a purchase order for repair
charges must accompany the return. Dynamic Engineering will not be responsible for
damages due to improper packaging of returned items. For service on Dynamic
Engineering Products not purchased directly from Dynamic Engineering contact your
reseller. Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.
Out of Warranty Repairs
Out of warranty repairs will be billed on a material and labor basis. Customer approval
will be obtained before repairing any item if the repair charges will exceed one half of
the quantity one list price for that unit. Return transportation and insurance will be billed
as part of the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793
support@dyneng.com

 Embedded Solutions Page 54 of 56

Specifications
PCI Interfaces: PCI Interface 33 MHz. 32-bit

Access types: Configuration and Memory space utilized

CLK rates supported: 33 MHz. PCI, PLL with 50 MHz reference to

provide programmable frequencies. PLL has 4
inputs to FPGA, 1 used for RTN10.

Memory Memory is provided 32Mbyte SDRAM per
channel/port and user defined boundaries.
FIFO mode supported for RTN10.

I/O 20 NECL Transmitters. 20 NECL receivers. 12
TTL with programmable direction. RTN10
uses 10 ea. Tx and Rx plus clock input and
reference clock output for loop-back

Interface: D100 connector. [AMP] 787082-9 is the board
side part number

Software Interface: Control Registers within Xilinx.

Initialization: Programming procedure documented in this
manual

Access Modes: Registers on long-word boundaries. Standard
target access read and write to registers and
memory. DMA access to memory.

Access Time: No wait states in DMA modes. 1-2 wait states
in target access.

Interrupt: 1 interrupt to the PCI bus is supported with
multiple sources. The interrupts are maskable
and are supported with a status register.

Onboard Options: All Options are Software Programmable

Dimensions: Half-length PCI board.

 Embedded Solutions Page 55 of 56

Construction: High temp ROHS compliant FR4 Multi-Layer
Printed Circuit, through Hole and Surface
Mount Components.

Power: 5V, 3.3V from PCI bus. Local 3.3, 2.5, 1.2 and
-5 created with on-board power supplies.

User 8 position software readable switch
Power LED’s for each of the supplies plus PCI
power

 Embedded Solutions Page 56 of 56

Order Information
Standard temperature range -40-70øC
PCI-NECL2-RTN10 http://www.dyneng.com/pci_ecl_II.html

half length PCI card with Spartan VI -100, 40 ECL, 12
TTL I/O, 1 PLL w/ 4 outputs

PCI-NECL2-RTN10-ENG Engineering Kit for the PCI-NECL2-RTN10

Software, Cable and HDEterm100. See webpage for
more details and options including software drivers.

HDEterm100 http://www.dyneng.com/HDEterm100.html
 100-pin connectors (2) matching the PCI-NECL2-

RTN10 D100 interconnected with 100 screw
terminals. DIN rail mounting. Optional terminations
and testpoints.

HDEcable100 http://www.dyneng.com/HDEcabl100.html
 100 pin connector matching PCI-NECL2-RTN10 and

HDEterm100. Length options

All information provided is Copyright Dynamic Engineering

