
DYNAMIC ENGINEERING

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

https://www.dyneng.com

sales@dyneng.com

Est. 1988

PMC-BiSerial-VI-UART

Linux Documentation

Developed/Tested on Linux Kernel

v. 5.4.0-74-generic

Revision 01p2 9/17/21

Corresponding Hardware: Revision 02+
PMC 10-2015-06XX

FLASH 0210

https://www.dyneng.com/
https://www.dyneng.com/
mailto:dedra@dyneng.com
mailto:dedra@dyneng.com

 Embedded Solutions Page 2

PMC-BiSerial-VI-UART

Linux Device Driver

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to Dynamic

Engineering. It has been supplied in confidence and the recipient, by

accepting this material, agrees that the subject matter will not be copied

or reproduced, in whole or in part, nor its contents revealed in any

manner or to any person except to meet the purpose for which it was

delivered.

Dynamic Engineering has made every effort to ensure that this manual

is accurate and complete. Still, the company reserves the right to make

improvements or changes in the product described in this document at

any time and without notice. Furthermore, Dynamic Engineering

assumes no liability arising out of the application or use of the device

described herein.

The electronic equipment described herein generates, uses, and can

radiate radio frequency energy. Operation of this equipment in a

residential area is likely to cause radio interference, in which case the

user, at his own expense, will be required to take whatever measures

may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical

components in life support devices or systems without the express

written approval of the president of Dynamic Engineering.

This product has been designed to operate with PMC carriers and

compatible user-provided equipment. Connection of incompatible

hardware is likely to cause serious damage.

©2021 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective

manufactures.

 Embedded Solutions Page 3

INTRODUCTION 4

DRIVER INSTALLATION 4

DRIVER SOFTWARE DESCRIPTION 4

Modes of Operation 5
Unpacked 5
Packed 5
Packet 5
Alternate Packet 5
Test 5

IO Controls 6
DE_GET_BD_INFO 7
DE_PLL 7
DE_CONFIG_PT 8
DE_GET_STATS 9
DE_REG 9
DE_SEND_BREAK 10
DE_FIFO_READ 10
DE_FIFO_WRITE 10
DE_FORCE_INT 10

Open 11

Close 11

Read and Write 11

USER SOFTWARE DESCRIPTION 11

WARRANTY AND REPAIR 14

Service Policy 14
Support 14

For Service Contact: 14

Table of Contents

 Embedded Solutions Page 4

Introduction

The PMC-BiSerial-VI is an eight channel, full duplex UART interface card supporting

various modes of operation. All channels are supported with their own DMA engines

(For a detailed description of the hardware including register definitions, see HW User

Manual).

Driver Installation

Kernel drivers must be compiled to run on each specific kernel. As such, we distribute all

the source code for the driver along with a make file (this will make the .ko file) and

install script (this installs the driver and creates the device nodes for applications to

access the ports “/dev/ deUart_<x>”, where <x> can be replaced by the port number 0-7,

and finally an uninstall script (this uninstalls the driver and removes all device nodes).

Note: the driver does not install permanently with the current script. As such, the driver

will need to be reinstalled if the computer is rebooted. If you would like the driver

installed permanently, and you are having any difficulty with the process using a standard

Linux distribution such as Ubuntu, CentOS, or RedHat, please contact us and we can

assist you with this procedure.

The provided de_BiSerUart.h and de_common.h files are the C header files that define

the Application Program Interface (API) for the BiSerUart driver. These files are

required at compile time by any application that wishes to interface with the driver and

for compiling the driver. The UserAp sample software package is written in C++ (with

some legacy C embedded in it) to demonstrate how to use the C API within a C++

environment. The other example software is written in C.

Driver Software Description

The driver supports full duplex operation on all 8 channels.

A default configuration is applied when ports are opened for the first time. These default

settings are defined in the driver header file, de_BiSerUart.h. The default I/O port config

setting is named de_default_pt_config. The default config parameters can be customized

for a particular application, and the driver recompiled. This may eliminate the need for

invoking the config ioctl.

Applicable I/O configuration parameters include blocking timeout, baud-rate, mode,

parity, flow control, inter-char timer (utilized for packet modes), and various UART

options (data size, stop bits, and terminations). Blocking timeout provides a mechanism

to timeout on blocking operations.

 Embedded Solutions Page 5

Default I/O configuration is as follows: Blocking timeout on reads = 5 sec. (if opened as

blocking), 115200 baud-rate, packed mode of operation, even parity, flow control

enabled (CTS/RTS), auto compute inter-char timer based upon baud-rate, 8-bit data, 1

stop bit, terminate CTS and Rx signals.

Modes of Operation

The HW and SW support 5 modes of operation on a port by port basis, all modes accept

(writes) and return (reads) a packed byte stream. Please note I/O limitations between

ports populating different platform types (little endian to/from big endian). If required for

specific customer applications, these limitations can be addressed/resolved for an

additional fee.

Unpacked

Prepends or strips 3 fill bytes for each data byte, max frame size = 255 bytes. Size does

not have to be a multiple of 4 bytes. I/O between big/little endian platforms not

supported.

Packed

Max frame size = 1020 bytes, size must be a multiple of 4 bytes

Packet

Packed data, max frame size = 1020 bytes, size does not have to be a multiple of 4 bytes,

however for non-aligned receive packets least significant bytes are filled with zeros to

force alignment. Non-aligned (not a multiple of 4 bytes) I/O between big/little endian

platform not supported.

Alternate Packet

Prepends/strips control byte for every 3 bytes of data max frame size = 765 bytes. Does

not have to be a multiple of 4 bytes, and received packet will contain no fill bytes. This

mode is not supported on big endian platforms.

Test

Raw mode of operation supporting test.

When operating in either of the packet modes, a read will return the next available packed

irrespective of size. Thus, reads should be issued with a size of DE_MAX_FRAME.

Please see HW manual for further discussion of advantages/disadvantages of each mode.

 Embedded Solutions Page 6

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a

single Device Node, which controls a single board or I/O channel. IOCTLs are called

using the Linux function Ioctl(int fd, unsigned long request, …), and passing in the file

descriptor to the device opened with Open(const char *pathname, int flags).

 Embedded Solutions Page 7

The IOCTLs defined for the BiSerUart driver are described below:

DE_GET_BD_INFO

Function: Returns a struct containing the, Xilinx flash revision (major/minor), type id, and the

user switch value.

Input: None

Output: de_rev_t structure

Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has been

selected by the user (see the board silk screen for bit position and polarity). Revision

Major and Revision Minor represent the current Flash revision. The design is the design

number for a particular version of the board based.

// Board information

typedef struct de_rev {
 uint8_t major;

 uint8_t minor;

 uint8_t design;

 uint8_t dips;
} de_rev_t;

DE_PLL

Function: Writes or Reads to the internal registers of the PLL.

Input: de_pll_cfg_t structure (if writing)

Output: de_pll_cfg_t structure (if reading)

Notes: The de_pll_cfg has two elements: op – which is an enum type with three possible

values, DE_GET_OP, DE_SET_OP, and DE_RMW_OP. The first is used to read the

PLL the second is to write. The third is not used, but could be used to do

read/write/update (and is used in other ioctls). The second, dat, is an array of 40 bytes

containing the PLL register data to write or that is read based on the op command.
// Structures for IOCTLs

typedef enum de_op {
 DE_GET_OP = 0,
 DE_SET_OP = 1,
 DE_RMW_OP = 2
} de_op_t;

typedef struct de_pll_cfg {
 de_opt_t op;
 unsigned char dat[PLL_MESSAGE_SIZE];
} de_pll_cfg_t;

 Embedded Solutions Page 8

DE_CONFIG_PT

Function: Reads/Writes the main configuration parameters for each port (depending one which

device node was opened).

Input: de_port_cfg_t structure

Output: de_port_cfg_t structure

Notes: This ioctl is used to configure each ports primary settings. As with the PLL above,

this requires the de_op_t to say if the configuration is being read or written.

// Port Configuration

typedef struct de_port_cfg {
 de_op_t op;

 long blocking_to; //if in non-blocking user to pick timeout in milliseconds

 unsigned int br_clk_src; // 0 = 32 Mhz osc., 1 = PLL

 unsigned int baud_rate; //

 unsigned char mode; // (see de_mode_t below)

 unsigned char parity; // (see de_parity_t below)

 unsigned char flow_ctl; //(see flow_ctl_t below)

 unsigned int ic_time; //

 unsigned options; //(see de_opts_t below and ‘or’ the values together to set configuration)
} de_port_cfg_t;

typedef enum de_mode {
 DE_UNPACKED = 1,

 DE_PACKED = 2,

 DE_PACKET = 3,

 DE_ALT_PACKET = 4,

 DE_TX_TEST = 5,
} de_mode_t;

typedef enum de_parity {
 DE_NO_PARITY = 0,

 DE_EVEN_PARITY = 1,

 DE_ODD_PARITY = 2,

 DE_STICK_PARITY = 3,
} de_parity_t;

typedef enum de_flow {
 DE_NO_FLOW = 0,

 DE_NORM_FLOW = 1,

 DE_INVT_FLOW = 2,
} de_flow_t;

typedef enum de_opts {
 DE_8_BIT = 0x01,

 DE_2_STOP = 0x02,

 DE__CTS_TERM = 0x04,

 DE_RTS_TERM = 0x08,

 DE_RX_TERM = 0x10,

 DE_TX_TERM = 0x20,

 Embedded Solutions Page 9

 DE_LOOPBACK = 0x40,
} de_opts_t;

DE_GET_STATS

Function: This ioctl fetches and possibly clears stats

Input: de_get_stats_t structure

Output: de_get_stats_t structure

// Board information

typedef struct de_get_stats {
 int clear;
 de_pt_stats_t stats; // (see de_pt_stats_t below)
} de_get_stats_t;

typedef struct de_pt_stats {
 unsigned int frame_err_cnt;
 unsigned int re_ovfl_cnt;

 unsigned int parity_err_cnt;

 unsigned int break_cnt;

 unsigned int last_rx_err;

 unsigned int rx_cnt;

 unsigned int tx_cnt;
} de_pt_stats_t;

DE_REG

Function: Reads/Writes any register value.

Input: de_reg_cmd_t structure

Output: de_reg_cmd_t structure

Notes: The struct uses the same op code above to determine if reading or writing. The

de_reg_cmd_t has five components, the first is the op code, the second is the base address

used to determine of you are accessing the board registers or the ports registers, the third

is the value read or written, the fourth element is the offset for the specific register you

are trying to read/write. The final element can be used to do a RMW mask defined in

de_opt_t.

typedef struct de_reg_cmd {
 de_op_t op;

 de_reg_off_t base; // determines if accessing port or board level registers for this device node

 unsigned int val; // Value to be written or value read back

 unsigned int reg; // #define offsets from header file use here to say which register

 unsigned int mask; //can be used with DE_RMW_OP
} de_reg_cmd_t;

 Embedded Solutions Page 10

typedef enum de_reg_off {
 DE_REG_BASE = 0,

 DE_REG_PT = 1,

 DE_REG_INV = 2,
} de_reg_off_t;

 DE_SEND_BREAK

Function: Sends break

Input: de_break_cmd_t

Output: None

Notes: RETURNS 0 upon success, -EINVAL on failure.

typedef struct de_break_cmd_t {
 unsigned int period;
} de_reg_cmd_t;

DE_FIFO_READ

Function: This reads data from the FIFO 32-bits at a time

Input: None

Output: uint32_t

Notes: None

DE_FIFO_WRITE

Function: Writes data to FIFO 32-bits at a time

Input: uint_32

Output: None

Notes: None

DE_FORCE_INT

Function: This will cause the device to trigger an interrupt.

Input: None

Output: None

Notes: This is primarily used for testing the boards interrupts

 Embedded Solutions Page 11

Open

All ioctls, read, write and close, use the file descriptor (fd) returned from an open call that

is passed the device node as a parameter (i.e. “/dev/deUart_n”).

The only configuration used in the open call that is supported is the O_NONBLOCK. if

O_NONBLOCK and the timeout can be configured with DE_CONFIG_PT ioctl by

setting the blocking_to parameter of the struct.

Close

This is the standard Linux system call close() that takes as a parameter the file descriptor

returned from open().

Read and Write

Data is written/read to/from the device (and out the port) using the Linux write() and

read() system calls. The size of the buffer allowed is constrained by the

DE_MAX_FRAME value set as a macro in the header file as well as mode of operation

selected during configuration (See Modes of Operation above for reference). If you are

experiencing failures on read or write, it is suggested to look at the kernel messages using

dmesg to determine the source of failure as there are several debugging messages

available for mode/buffer size related errors.

User Software Description

We have provided a UserAp, which serves as a stand-alone code set with a simple and

powerful menu plus a series of tests that can be run on the installed hardware. Each of

the tests execute calls to the driver, pass parameters and structures, and get results back.

With the sequence of calls demonstrated, the functions of the hardware are utilized for

loop-back testing. The software is used for manufacturing testing at Dynamic

Engineering. The test software can be ported to your application to provide a running

start. The tests are simple and will quickly demonstrate the end-to-end operation of your

application making calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure

occurs and stop or to continue, to program a set number of loops to execute and more.

The user can add tests to the provided test suite to try out application ideas before

committing to your system configuration. In many cases the test configuration will allow

faster debugging in a more controlled environment before integrating with the rest of the

system.

 Embedded Solutions Page 12

In addition to the UserAp, there are a few smaller sample applications included to

demonstrate some of the basic means of using the device (open, config, read, write,

statistics).

The three sample applications are de_IoApp.c, de_IoAppS.c, de_IoctlApp.c, and

demonstrate configuration, ioctl invocation, and I/O in the supported modes, respectively.

Various modes of operation and options maybe validated/demonstrated by changing port

configuration parameters in the application and recompiling.

Specifically, de_IoApp.c is a board to board test. It requires two boards to be installed in

the platform and connected via a board-to-board test fixture. A minimum of two instances

must be invoked, first the reader, then the writer within 5 seconds. The applications run

asynchronously to one another. Port 0 is connected to port 8, port 1 to port 9, and so on

via test fixture.

de_IoAppS.c is a single board test. Ports are looped back to themselves externally via

single board test fixture. The application first writes to the specified port, and then reads

received data. Data integrity is then validated.

Invocation parameters

The three smaller I/O application invocation paramaters are as follows:

dyn_io - 2 board test

./dyn_io 1 0 baud-rate frame_len num_iterations //(reader, port 0, board 1)

./dyn_io 0 8 baud-rate frame_len num_iterations //(writer, port 8, board 2)

The first parameter specifies reader/writer. The second parameter is port number, third

parameter is baud-rate. Frame length is specified in bytes. Data is validated upon

reception. Application will execute for num_iterations, or until terminated due to an error

or interrupted via .

dyn_ioS - single board test

./dyn_ioS 0 baud-rate frame_len num_iterations //(port 0, board 1)

The first parameter specifies port. The second parameter is baud-rate followed by frame

length in bytes. Data is validated upon reception. Application will executedfor

num_iterations, or until terminated due to an error or interrupted via .

 Embedded Solutions Page 13

Note

This documentation will provide information about all calls made to the drivers, and how

the drivers interact with the device for each of these calls. For more detailed

information on the hardware implementation, refer to the PMC-BiSerial-VI-UART user

manual as appropriate (also referred to as the hardware manual).

 Embedded Solutions Page 14

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and

options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.

The driver has gone through extensive testing, and in most cases it will be “cockpit error”

rather than an error with the driver. When you are sure or at least willing to pay to have

someone help then call or e-mail and arrange to work with an engineer. We will work

with you to determine the cause of the issue.

Support

The software described in this manual is provided at no cost to clients who have

purchased the corresponding hardware. Minimal support is included along with the

documentation. For help with integration into your project please contact

sales@dyneng.com for a support contract. Several options are available. With a contract

in place Dynamic Engineers can help with system debugging, special software

development, or whatever you need to get going.

For Service Contact:

Customer Service Department

Dynamic Engineering

150 DuBois Street, Suite C

Santa Cruz, CA 95060

831-457-8891

support@dyneng.com

All information provided is Copyright Dynamic Engineering

http://www.dyneng.com/warranty.html
mailto:sales@dyneng.com

