DYNAMIC ENGINEERING

150 DuBois St. Suite C Santa Cruz CA 95060
831-457-8891 Fax 831-457-4793
http://www.dyneng.com
sales@dyneng.com
Est. 1988

Software User’s Guide
(Linux)

Libipack/lib_gen/libipxx
IPACK user libraries
IPACK generic driver

http://www.dyneng.com/
mailto:sales@dyneng.com

Libipack

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

©2015-2019 by Dynamic Engineering.

Other trademarks and registered trademarks are owned by their
respective manufactures.

Revised 04/01/2019

M. DYNAMIC

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment in
a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

ENGINEERING Embedded Solutions Page 2

ProduCt DESCIIPLIONeeviiiiecie sttt te et e st e et esseenaeesnesneesreeneeas 4

SOFWAIE DESCIIPIION ...ttt 4
Libipack APT deSCrIPLIONS........civiiiiiiiieieeee e 5
LiDIPXX APT AESCHIPLIONS ...cvviiieie ettt re e 10
Libip_pario AP AESCIIPLIONSoiviiiiiiiiieiieiieie ettt 11
Libipctrh APT deSCrIPLIONSocviiiiiiieiicieee e 16
LiDipSib AP deSCrIPLIONS.ccuieiiiicciecie sttt re e 20
LiDIipOpto API deSCHIPLIONSoviiiiiieiieieeee e 23
INSTAITATION. ... 27
R F T a] o] 2 To] o] [Tor: 14 0] S USSR 27
Invocation parameters (IP_PariOADPD)cooiiriiirienieiere et 27
Invocation parameters (Ip_ParioTIMI) ... s 28
Warranty and REPAITceeiuiiieie ettt e e sre e e sreeee s 33
SEIVICE POLICY ..ttt 33
Out Of Warranty REPAITSc.ooueiiiiiiiiiieieee e 33

FOF SEIVICE CONTACE:evitiieeieteiee et 33

DYNAMIC
ENGINEERING Embedded Solutions Page 3

Product Description

Dynamic Engineering has developed and supplies user-level IPACK (Industry
Pack) libraries which support both generic IPACK operations, and device specific
functions.

These libraries interface with the ipack-core (Open Source ported from 3.5
kernel) via the ipack_gen(eric) driver. Thus, this kernel module serves as a
gasket between the user-libraries and the ipack-core. The Dynamic Engineering
PciNIP driver is a bus/carrier driver supporting all our released carrier/bridge
cards interfacing with the ipack-core.

Software Description

As described in the PciNIP SW manual, the ipack-core and de_PCciNIP kernel
modules must be built and installed prior to utilization of any other IPACK
components including those described within this document. Please see that
manual for details WRT building and installing these modules.

Based upon specific IPACK device complexity, application developers have
multiple methods available for interfacing with the device. A kernel driver may be
developed or supplied as depicted on the right side of the diagram below.

This document will address the components and methods depicted on the left
side of the diagram. Namely, libipack, lib_gen(eric), and a libipxx library.

N DYNAMIC
ENGINEERING Embedded Solutions Page 4

app

ipack device ipack device

app

ipack device app

libipxx
(dev specific user lib)

¥

libipack
(generic user lib)

ipack_gen device
driver

]

User space

Kernel space

ipack specific device
driver

i

ipack-core

1

de_PciNIP bus/carrier driver

The libraries and ipack-gen driver have been validated on an i7 Ubuntu server
running 3.8.0-44 kernel (64 bit) SMP (little Endian platform and a P2020 (PPC)
target running 3.0.48-rt70 SMP kernel (big Endian platform).

Libipack APl descriptions

The following APIs support generic Industry Pack operations and functions. Please
review the following descriptions for caveats and general usage details.

> DYNAMIC
ENGINEERING

Embedded Solutions Page 5

/**

X3k X F X ok X 3k X o X X X

libipack init

Initialize library. This function must be invoked prior to utilizing
any of the following access routines. If utilized in conjunction
with any Dynamic Engineering module specific libraries, it will be
invoked implicitly.

Parameters:
N/A (void)

Returns:
Number of modules upon success, < 0 upon failure

int libipack init (void);

/*k***********************

X o o o 3k X 3k X ok X ok X

libipack exit

Exit/shutdown library. This function should be invoked upon
application termination. If utilized in conjunction with any
Dynamic Engineering module specific user libraries, that library
will invoke this function upon exit.

Parameters:
N/A (void)

Returns:
0 upon success, < 0 upon failure

int libipack exit (void);

DYNAMIC
ENGINEERING Embedded Solutions Page 6

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ipack get modules

Find/get a list of specified IPACK modules. A specific manufacturer
ID, model number, and design ID can be specified,

or any combination of manufacturer, model number, and design ID via
the parameter IPACK ANY ID. A list of IPACK modules meeting the *
criteria is returned. If utilized in conjunction with any Dynamic *
Engineering module specific user libraries, that library will invoke
this function during discovery processing.

Parameters:

man_id - IPACK manufacturer ID or IPACK ANY ID

model num - IPACK model number or IPACK ANY ID

design_id - IPACK driver id (low byte used by Dynamic Engineering
to specify design variant) or IPACK ANY ID.

modules - pointer to an array of size (libipack:MAX IP MODULES)
if find all is true. Otherwise, an array of a single
element is sufficient.

Returns:

Number of modules upon success, < 0 upon failure

int ipack get modules (unsigned char man id, unsigned char model num,

unsigned char design id, int find all, unsigned *modules);

/*k***************************************

*
*
*
*
*
*
*
*
*
*
*

ipack get modinfo

Get IPACK module info for specified device.

Parameters:

handle - IPACK handle returned from ipack get modules
modinfo - Module info returned in this structure
Returns:

Number of modules upon success, < 0 upon failure

int ipack get modinfo (ipack handle t handle,

ipack modinfo t* modinfo);

)

DYNAMIC
ENGINEERING Embedded Solutions Page 7

/**

ipack set irg parms

*

*

* This function sets required IRQ processing parameters. It must be
* dinvoked prior to enabling a module interrupt. If utilized in
* conjunction

* with any Dynamic Engineering module specific user libraries,
* that library will invoke this function during configuration
* processing.

* The input parameters ip int clr* specify irqg processing required to
* clear a module interrupt, set one of more to null if not required
* to clear interrupt.
*

* Parameters:

* handle - IPACK handle returned from ipack get modules
* vector - Pointer to vector parameters.

* read - Pointer to read parameters.

* write - Pointer to write parameters.

*

*

*

*

Returns:
0 upon success, < 0 upon failure
/
int ipack set irg parms (ipack handle t handle, ip int clr vec t*
vector, ip int clr rd t* read, ip_int clr wr t* write);

/**

* ipack wait irq

*

* This function awaits interrupt processing completion.

* ipack set irg parms must be invoked (directly, or indirectly via

* module specific library prior to invocation.

*

* Parameters:

* handle - IPACK handle returned from ipack get modules.

* vector rd - Vector read from int space during last interrupt.

* data_ rd - Data read during during last interrupt(s)

* rmw data rd - Data read and written back during last interrupt (s)
* timeout - timeout specified in Linux jiffies, 0 or WAIT FOREVER
* are valid values.

*

* Returns:

* 0 upon success, < 0 upon failure (likely timeout).

*

/
int ipack wait irqg (ipack handle t handle, unsigned short *vector rd,
unsigned int *data rd, unsigned int *rmw data rd,
unsigned timeout) ;

)

DYNAMIC
ENGINEERING Embedded Solutions Page 8

/**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/

int
int
int

int

KRR AR AR AR A A A A AR A A A AR A AR A AR A AR A AR A A KRR AR A AR A A A A AR AR AN A AR A AR A A A A AR Ak kK

ipack readX

The following read functions reads from the specified memory
module region at the specified offset.

Parameters:
handle - IPACK handle returned from ipack get modules.
region - ipack space t (IO, ID, MEM, or int space).
offset - byte offset from base of specified region.
count - Number of elements to read.
opts - ipack rw opts_t
(IPACK LO WD|IPACK HI WD|IPACK AUTO INC)
vals - Pointer to buffer wvalue(s) read during access.
(count # of values)
Returns:

Number of bytes read upon success, < 0 upon failure.

Special considerations:
ipack read64 will be defined if and only if the target platform
supports quad word reads natively.

ipack read8 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned char *vals);

ipack readl6 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned short *val);

ipack read32 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned int *vals);

ipack readé64 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned long *vals);

)

DYNAMIC
ENGINEERING Embedded Solutions Page 9

/**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/

int
int
int

int

KRR AR AR AR A A A A AR A A A AR A AR A AR A AR A AR A A KRR AR A AR A A A A AR AR AN A AR A AR A A A A AR Ak kK

ipack writeX

The following write functions writes to the specified module memory
region at the specified offset.

Parameters:
handle - IPACK handle returned from ipack get modules.
region - ipack space t (IO, ID, MEM, or INT space).
offset - byte offset from base of specified region
count - Number of elements to written.
opts - ipack rw opts_t
(IPACK LO WD|IPACK HI WD|IPACK AUTO INC|IPACK WR_FLUSH)
val - Pointer to vals to be written (count # of values).
Returns:

Number of bytes written upon success, < 0 upon failure.

Special considerations:
ipack write64 will be defined if and only if the target platform
supports quad word reads natively.

ipack write8 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned char* vals);

ipack writel6 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned short* wvals);

ipack write32 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned int* wvals);

ipack write64 (ipack handle t handle, ipack space t region,
unsigned offset, size t count, ipack rw opts t opts,
unsigned long* vals);

Libipxx API descriptions

The following library APls provide user-level access to specific Dynamic
Engineering IPACK modules. Currently, the IP-Parallel-10, IP-BiSerial-IV-CTRB,
IP-BiSerial-IV-SIB IPACK and IP-Optoto-16 modules are supported by a device
specific user library. This section shall expand as user libraries are added for
other Dynamic Engineering Industry Pack modules.

\

DYNAMIC
ENGINEERING Embedded Solutions Page 10

Libip_pario API descriptions

/**

*

* libip pario init

*

* Initialize library. This function must be invoked prior to

* utilizing any of the following access routines. This function
* returns a list of IP-PARIO modules either containing the first
* module found, or all modules.

*

* Parameters:

* find all - (0=find first, 1=find all)

* design_ id - IPACK driver ID (ip pario des id t) or

* IPACK_ANY ID

* modules - pointer to an array of size

* (libpack:MAX IP MODULES)

* if find all is true. Otherwise, an array of a
* single element is sufficient.

* Returns:

* Number of modules upon success, < 0 upon failure

*/

int libip pario init (int find all, ip pario des id t design id,
ipack handle t *modules) ;

/**

libip pario_exit

Exit/shutdown library. This function should be invoked upon
application termination.

N/A, void

Returns:
void
/

void libip pario exit (void);

*
*
*
*
*
* Parameters:
*
*
*
*
*

/**

ip pario cnfg io

Configure IP-PARIO module. This routine is invoked to setup various
control parameters for TTL or 485 bits. If both TTL and 485 modes
are supported/utilized by this module, this routine must be invoked
twice.

P I S

\

DYNAMIC
ENGINEERING Embedded Solutions Page 11

*

* Parameters:

* handle - Handle returned in module list (lib pario init)
* specifying which IP-PARIO module to configure.
* config - pointer to IP-PARIO configuration parameters

* See libip pario.h for details, and note

* for ip pario bits t

*

* Returns:

* 0 upon success, < 0 upon failure

*

/
int ip pario cnfg io (ipack handle t handle,
ip pario conf io t* config);

/**

*

* ip pario _get num nibs

*

* Get number of nibbles for a module based upon mode.

*

* Parameters:

* handle - Handle returned in module list (lib pario_init)
* specifying which IP-PARIO modules

* which IP-PARIO module

* mode - IP PARIO TTL or IP PARIO 485

* design_id - Pointer to design id, design id will be returned in
* this parameter, specify NULL if N/A.

* first bit - Pointer to first I/O bit, first I/O bits will be
* returned in this parameter, specify null if N/A.
*

* Returns:

* Number of nibbles for this module in specified mode

*

*/

int ip pario get num nibs (ipack handle t handle, ip pario mode t mode,
ip pario des id t* design id, int* first bit);

/~k~k*‘k*‘k~k~k~k~k~k~k~k~k~k*‘k*‘k~k~k~k~k~k~k~k~k~k~k~k*‘k*‘k*'k'k'k'k'k'k'k'k'k'k'k'k***********************

* 1ip pario_set io

*

* Set IO bits or other control bits (either TTL or 485) dynamically.
* 1ip pario_cnfg io should be invoked prior to utilizing this function.
*

* Parameters:

* handle - Handle returned in module list (lib pario init)

* specifying which IP-PARIO module to configure.

* mode - IP PARIO TTL or IP PARIO 485

* reg_set - Which register set to write (IP_PARIO CTLO,

* IP_PARIO INT ENO, IP PARIO INT CTLO or IP PARIO POLO.
* bits - Pointer to 3 element array (ip pario bits t).

*

TTL I/0 bits are active low, input when set to 1.

)

DYNAMIC
ENGINEERING Embedded Solutions Page 12

* Bit sense must be set for 485, and direction must be
* specified when setting bit sense.

* dir 485 - Only utilized when setting io bits in IP PARIO CTLO,
* ignored otherwise, null maybe specified for other

* register sets.

* mask - Mask specified which bits are written.

* See libip pario.h for details, and see note for

* for ip pario bits t

*

*

* Returns:

* 0 upon success, < 0 upon failure

*/

int ip pario set io (ipack handle t handle, ip pario mode t mode,
ip _pario reg off t reg set, ip pario bits t *bits,
ip pario bits t *dir 485, ip pario bits t *mask);

/~k~k~k*‘k~k*‘k~k*‘k~k*‘k**‘k**‘k**‘k**‘k*~k~k~k~k~k~k~k*‘k~k*‘k~k*‘k~k*‘k~k*‘k‘k‘k‘k*‘k‘k*‘k‘k*‘k‘k**‘k*‘k‘k*‘k‘k*
ip pario get io

Read IO bits (either TTL or 485) dynamically and atomically.
ip pario cnfg io should be invoked prior to utilizing this function.

Parameters:

handle - Handle returned in module list (lib pario_init)
specifying which IP-PARIO module to configure.

mode - IP _PARIO TTL or IP_PARIO 485

filtered - Pointer to 3 element array (ip pario bits t).

Values returned are after filter application.
Specify NULL if don't care.

unfiltered- Pointer to 3 element array (ip pario bits t).
Values returned are prior to filter application.
Specify NULL if don't care.
See libip pario.h for details, and see note for
ip pario bits t

Returns:
0 upon success, < 0 upon failure

b S S T R . S S S S S . S R S S S . S

/
int ip pario get io (ipack handle t handle, ip pario mode t mode,
ip pario bits t *filtered, ip pario bits t *unfiltered);

/**
ip pario init tmrA

Initiate IP-PARIO timer A. It configures timer A with the specified
duration/period. An interrupt maybe generated upon expiration
and/or generate a square wave on output data bit 23.

Interrupt occurence can be determined by invoking

R

)

DYNAMIC
ENGINEERING Embedded Solutions Page 13

b S S R SRR . S . S S S S s

ip pario_await int.

Parameters:

handle - Handle returned in module list (libip pario init)
specifying which IP-Pario module.

int enbl - Enable interrupt generation (0=no int, 1= interrupt)

wave enbl - Square wave enable

duration - 50 usec is minimum duration.

Special Considerations:

The function will fail if timer is currently active, to cancel an
outstanding timer, invoke the function ip pario reset tmr.

If current value of counter/timer must be read, use timer B, timer A
does not support this functionality.

Returns:

0 upon success, < 0 upon failure

int ip pario init tmrA (ipack handle t handle, wuint int enbl,

uint wave enbl, uint32 t period);

/*k********************************

b S A R T S S S S S R T SR ST SN . S S S

ip pario init tmrB

Initiate IP-PARIO timer B. It configures timer B with the specified
period. The period generated is guaranteed to be at least as large
as specified, and could be twice that specified due to underlying HW
implementation. An interrupt maybe generated upon at the rate of
the specified period. Timer will remain active until canceled by
invoking ip pario reset tmr. Current count can be read via

ip pario rd tmrB.

Parameters:

handle - Handle returned in module list (libip pario init)
specifying which IP-PARIO module.

int enbl - Enable interrupt generation (0O=no int, 1= interrupt)

period - 50 usec is minimum duration.

Special Considerations:
The function will fail if a timer is currently active, to cancel an
outstanding timer, invoke the function ipctrb reset tmr.

Returns:
0 upon success, < 0 upon failure

int ip pario init tmrB (ipack handle t handle, uint int enbl,

uint duration);

)

DYNAMIC
ENGINEERING Embedded Solutions Page 14

/**
Ak KkKkKk Kk kK

ip pario rd tmrB

*

* Read timer B current counter. This value is returned in usecs.
*

* Parameters:

* handle - Handle returned in module list (libip pario init) spec-
ifying

* which IP-PARIO module.

*

* Returns:

* Counter offset value on success, < 0 upon failure.

*/

int32 t ip pario _rd tmrB (ipack handle t handle);

/~k~k*‘k*‘k~k~k~k~k~k~k~k~k~k*‘k*‘k~k~k~k~k~k~k~k~k~k~k~k*‘k*‘k*'k'k'k'k'k'k'k'k'k'k'k'k***********************

*

* 1ip pario reset tmr

*

* Reset IP-PARIO timer. This routine will disable/reset specified
* timer.

*

* Parameters:

* handle - Handle returned in module list (libip pario init)
* specifying

* which IP-PARIO module.

* timer - 0 = timer A, 1 = timer B

*

* Returns:

* 0 upon success, < 0 upon failure.

*/

int ip pario reset tmr (ipack handle t handle, uint timer);

/**

Specify NULL for timer interrupts or if data bit
transitions are don't care.

bits 485 - 485 Data bit transitions read upon data interrupt
Specify NULL for timer interrupts or if data bit
transitions are don't care.

*

* ip pario_await int

*

* Await interrupt for the specified PARIO interrupt. These interrupts
* types include data bit transitions, timer A, or timer B.

*

* Parameters:

* handle - Handle returned in module list (libip pario init)
* specifying which IP-PARIO module.

* event - Interrupt of interest

* bits ttl - TTL Data bit transitions read upon data interrupt
*

*

*

*

*

)

DYNAMIC
ENGINEERING Embedded Solutions Page 15

timeout - Timeout awaiting interrupt in msec.

Special considerations:
Bit transitions/interrupts are reported as a 'l' independent of
interrupt polarity.

Returns:
0 upon success, < 0 upon failure.

b S . R S S

/
int ip pario await int (ipack handle t handle, ip pario_ints t event,
ip pario bits t *bits ttl, ip pario bits t *bits 485, long timeout);

Libipctrb API descriptions

/**
. i .-
libipctrb_init

*

*

Initialize library. This function must be invoked prior to utilizing any
of the following access routines. This function returns a list of IP-CTRB
modules either containing the first module found, or all modules.

*

Parameters:

* find_all - (O=find first, 1=find all)

* modules - pointer to an array of size (libipack:MAX_IP_MODULES)
if find_all is true. Otherwise, an array of a single
element is sufficient.

Returns:

Number of modules upon success, < 0 upon failure

*/
int libipctrb_init (int find_all, unsigned *modules);

/**
. i -
libipctrb_init

*

*

Initialize library. This function must be invoked prior to utilizing any
of the following access routines. This function returns a list of IP-CTRB
modules either containing the first module found, or all modules.

*

Parameters:

* find_all - (0=find first, 1=find all)

* modules - pointer to an array of size (libipack:MAX_IP_MODULES)
* if find_all is true. Otherwise, an array of a single

element is sufficient.

\

N DYNAMIC
ENGINEERING Embedded Solutions Page 16

*

*

*/

Returns:
Number of modules upon success, < 0 upon failure

int libipctrb_init (int find_all, unsigned *modules);

/**

EE R R

*

*/

libipctrb_exit

Exit/shutdown library. This function should be invoked upon application
termination.

Parameters:

num_modules - Value returned from lib_ipctrb

modules: - pointer to an array returned from lib_ipctrb_init
if find_all is true. Otherwise, an array of a single
element is sufficient.

Returns:

0 upon success, < 0 upon failure

int libipctrb_exit (unsigned num_modules, unsigned *modules);

/**

*
*
*
*
*
*
*
*
*
*
*
*
*

ipctrb_initiate_timer

Start a IP-CTRB module timer. This routine is invoked to initiate a timer.
It configures HW to generate an external pulse, and interrupt (if enabled)
when the timer expires. This routine is non-blocking, interrupt occurence
can be determined by invoking ipctrb_await_int.

Parameters:

handle - Handle returned in module list (lib_ipctrb_init) specifying
which IP-CTRB module.

channel - Channel on the module to initiate a timer (0-7).

ext _clk - 1 =use external clock, O = internal.

reload - 0 =normal counter mode, 1 = counter mode/auto reload.

\

\, DYNAMIC
ENGINEERING Embedded Solutions Page 17

int_enbl - Enable interrupt generation (0=no int, 1= interrupt)
duration - 1-4292967295 usec.

Special Considerations:

The function will fail if a timer is currently active, to cancel an
outstanding timer, invoke the function ipctrb_reset chan. Further,
if interrupts are not enabled, timer expiration can be determined by
invoking this routine, it will fail with status xx until timer is no longer
active (assuming reload==0).

Returns:
0 upon success, < 0 upon failure

S S R N N N N N

*/
int ipctrb_initiate_timer (ipack _handle_t handle, unsigned char channel,
unsigned ext_clk, unsigned reload, unsigned int_enbl,
unsigned int duration);

/**

ipctrb_initiate_1shot

Start a IP-CTRB module one shot timer. This routine is invoked to
initiate a one shot timer. It will configure HW to generate an external
pulse of the duration specified. The one shot is started based upon an
internal or external trigger. It can be configured to start on the rising
or falling edge of the selected trigger. This routine is non-blocking,

if interrupts are enabled, completion mayb be determined by invoking
ipctrb_await_int.

* Parameters:

* handle - Handle returned in module list (lib_ipctrb_init) specifying
* which IP-CTRB module.

* channel - Channel on the module to initiate the one shot (0-7).

* ext_clk - 1 =use external clock, 0 = internal.

* trigger - O=internal trigger (clock), 1=external trigger

* edge_sel - 0 = falling edge, 1=rising edge of trigger

* int_enbl - Enable interrupt generation (0O=no int, 1= interrupt)

* duration - 1-4292967295 pulse width (usec).

Special Considerations:
The function will fail if a one shot is currently active, to cancel an
outstanding timer, invoke the function ipctrb_reset chan. Further,

s,

Y. DYNAMIC
ENGINEERING Embedded Solutions Page 18

* if interrupts are not enabled, timer expiration can be determined by
invoking this routine, it will fail with status xx until one shot is no
longer active.

*

*

Returns:

* 0 upon success, < 0 upon failure

*/

int ipctrb_initiate_1shot (ipack _handle_t handle, unsigned char channel,

unsigned ext_clk, unsigned trigger, unsigned edge_sel,
unsigned int_enbl, unsigned int duration);

/**
.

ipctrb_reset_chan
*

Reset IP-CTRB channel.
This routine will cancel any outstanding request for this channel.

* Parameters:

* handle - Handle returned in module list (lib_ipctrb_init) specifying
* which IP-CTRB module.

* channel - Channel on the module to reset (0-7).

Returns:
* 0 upon success, < 0 upon failure.
*/
int ipctrb_reset_chan (ipack _handle_t handle, unsigned char channel);

/**

*

ipctrb_await_int

Await timer/counter interrupt on one or multiple channels of of an
IP-CTRB module.

* Parameters:

* handle - Handle returned in module list (lib_ipctrb_init) specifying
* which IP-CTRB module.

* chan - Channel of interest.

* timeout - Timeout awaiting interrupt in msec.

Returns:
0 upon success, < 0 upon failure.

N DYNAMIC
ENGINEERING Embedded Solutions Page 19

int ipctrb_await_int (ipack_handle_t handle, unsigned char channel,

unsigned int timeout);

Libipsib API descriptions

/**

* 0% F F F X X X X X X X X

*

*/

libipsib_init

Initialize library. This function must be invoked prior to utilizing any

of the following access routines. This function returns a list of IP-SIB
modules either containing the first module found, or all modules.
Further all channels will be defaulted to SDC/SDT mode configuration.

Parameters:

find_all - (O=find first, 1=find all)

modules - pointer to an array of size (libipack:MAX_IP_MODULES)
if find_all is true. Otherwise, an array of a single
element is sufficient.

Returns:

Number of modules upon success, < 0 upon failure

int libipsib_init (int find_all, unsigned *modules);

/**

E R SR N R

*

*/

libipsib_exit

Exit/shutdown library. This function should be invoked upon application
termination.

Parameters:

num_modules - Value returned from libipsib_init.

modules: - pointer to an array returned from lib_ipsib_init
if find_all is true. Otherwise, an array of a single
element is sufficient.

Returns:

0 upon success, < 0 upon error (standard Linux errno)

int libipsib_exit (unsigned num_modules, unsigned *modules);

N DYNAMIC
ENGINEERING Embedded Solutions Page 20

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

ipsib_config_ch
Configure IP-SIB channel

Parameters:
handle - Handle returned in module list (libsib_init) specifying
which IP-SIB module.
channel - Channel on the module to initiate a timer (0-1)
mode - SIB mode of operation (0=SDC/SDT, 1=USIP/USOP)
cts_pol - Polarity of cts signal (O=active high, 1=active low)
(Don't care for SDC/SDT mode, CTS is disabled).

Returns:
0 upon success, < 0 upon error (standard Linux errno)

int ipsib_config_ch (ipack_handle_t handle, unsigned char channel,

unsigned mode, unsigned cts_pol);

/**

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ipsib_read

Read from a SIB channel.

Parameters:

handle - Handle returned in module list (lib_ipsib_init) specifying
which IP-SIB module.

channel - Read channel.

*buf - Buffer of size count.

count - Number of words to read.

timeout - Non-zero value implies blocking read of duration timeout
msec. If 0 is specified, non-blocking read

Special Considerations:

Channel must be configured prior to initiating a read or write.

Maximum read/write size is 511 bytes

Returns:

\, DYNAMIC
ENGINEERING Embedded Solutions Page 21

*

*/

Count of words read, < 0 upon error (standard Linux errno)

int ipsib_read (ipack_handle_t handle, unsigned char channel,

unsigned short *buf, unsigned count, unsigned int timeout);

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

ipsib_write
Write to a SIB channel.

Parameters:

handle - Handle returned in module list (lib_ipsib_init) specifying
which IP-SIB module.

channel - Write channel.

*buf - Buffer of size count.

count - Number of words to write.

timeout - Non-zero value implies blocking write of duration timeout
msec. If 0 is specified, non-blocking write.

Special Considerations:
Channel must be configured prior to initiating a read or write.
Maximum read/write size is 511 bytes

Returns:
Count of words written, < 0 upon error (standard Linux errno)

int ipsib_write (ipack _handle_t handle, unsigned char channel,

unsigned short *buf, unsigned count, unsigned int timeout);

/**

*

*

*OO0F F X X X X X X *

ipsib_reset _chan

Reset IP-SIB channel.
This routine will reset channel without impacting current configuration
settings.

Parameters:

handle - Handle returned in module list (lib_ipsib_init) specifying
which IP-SIB module.

channel - Channel on the module to reset (0-1).

Returns:

\, DYNAMIC
ENGINEERING Embedded Solutions Page 22

* 0 upon success, < 0 upon error (standard Linux errno).
*/
int ipsib_reset_chan (ipack_handle_t handle, unsigned char channel);

Libipopto API descriptions

/**

libipopto_init

Initialize library. This function must be invoked prior to utilizing any

of the following access routines. This function returns a list of IP-OPTO
modules either containing the first module found, or all modules.

The counter (CTB) will be started during initialization.

* Parameters:

* find_all - (O=find first, 1=find all)

* modules - pointer to an array of size (libipack:MAX_|IP_MODULES)
* if find_all is true. Otherwise, an array of a single

* element is sufficient.

* Returns:

* Number of modules upon success, < 0 upon failure

*/

int libipopto_init (int find_all, unsigned *modules);

/**

* libipopto_exit

* Exit/shutdown library. This function should be invoked upon application
* termination.

* Parameters:

* num_modules - Value returned from lib_ipopto _init

* modules: - pointer to an array returned from lib_ipctrb_init

* Returns:

* 0 upon success, < 0 upon failure

*/

int libipopto_exit (unsigned num_modules, unsigned *modules);

N DYNAMIC
ENGINEERING Embedded Solutions Page 23

/**

*

*

EE I S N N N RN N N N N SN N N N N

ipopto_cfg_wavefm

Configure and initiate or terminate waveform generation (CTA). Once
waveform is configured and enabled, it can be utilized for FET control
and/or interrupt generation. Interrupt generation and FET switching
will occur at the rate of period/2.

Parameters:

handle - Handle returned in module list (libipopto_init) specifying
which IP-OPTO module.

wav_enbl - Enable/disable waveform generation
(IPOPTO_ENBL or IPOPTO_DISABLE)

period - Period of waveform in usec
(Don't care if wav_enbl == IPOPTO_DISABLE);

Special Considerations:

The function will fail if waveform generation is currently active and
waveform generation is currently active. To modify waveform, it first
must be idle.

ipopto_await_int maybe utilzed to determine interrupt assertion.

Returns:

* Actual waveform period (> 0) if successful, < 0 upon failure

*/

int ipopto_cfg_wavefm (ipack _handle_t handle, ipopto_enbl_t wav_enbl,

unsigned int period);

/**

*
*
*
*
*
*
*
*
*
*
*
*
*

ipopto_fet ctrl

This function configures 1 or more FET channels. The channel(s) may
operate in manual or waveform driven mode. Manual mode can
enable/disable FET (on/off).

In auto mode, FET switching is driven by waveform configured via
ipopto_cfg_wavefm.

Parameters:

handle - Handle returned in module list (libipopto_init) specifying
which IP-OPTO module.

chan_msk - Bit mask specifying which channels to configure
e.g. 0x8001 means configure channels 15 and 0.

\

\, DYNAMIC
ENGINEERING Embedded Solutions Page 24

mode_msk - Bit mask specifying mode for specified channels.
e.g. 0x0001 = Channel 15 : Manual
Chanel 0 : Auto (waveform driven)
enbl_msk - Bit mask specifying on/off (Don't care for auto mode).
e.g. 0x1001 == 0x1000, Channel 0 on.

*

Special Considerations:
If auto mode specified (waveform driven), ipopto_cfg_wavefm must be invoked
prior to this function for successful execution. Otherwise call will fail.

Returns:

Bit mask status, 0 returned on success, !0 upon failure.
e.g. for example above.

0x0001 = config failed for channel 0

L S U N N N

*/
unsigned short ipopto_fet_ctrl (ipack _handle_t handle, unsigned short chan_msk,
unsigned short mode_msk, unsigned short enbl_msk);

/**

*

ipopto_await_int

*

* Await timer/counter interrupt from CTA (if waveform generation is enabled).
* This function will enable interrupt generation when invoked, and disable

* interrupt generation upon exit.

* Parameters:

* handle - Handle returned in module list (libipopto_init) specifying

* which IP-OPTO module.

* timeout - Timeout awaiting interrupt in msec.

* Special Considerations:

* If waveform generation has not been enabled, this function will immediately
* fail and return an error.

* Returns:

* 0 upon success, < 0 upon failure.

*/

int ipopto_await_int (ipack_handle_t handle, unsigned int timeout);

N DYNAMIC
ENGINEERING Embedded Solutions Page 25

/**

*

*

LR D S N R N

*/

ipopto_get_counter

This function reads the current 32 bit counter value (CTB). The counter
is automatically initiated during initialization. This value is

converted to usec based upon IP BUS speed setting. This counter can
be reset upon read completion via the reset parameter.

Parameters:

handle - Handle returned in module list (libipopto_init) specifying
which IP-OPTO module.

reset - IPOPTO_ENABLE (reset) or IPOPTO_DISABLE (don't reset).

Returns:
Counter value in usecs if successful, < 0 upon failure.

int ipopto_get_counter (ipack_handle_t handle, ipopto_enbl_t reset);

DYNAMIC
ENGINEERING Embedded Solutions Page 26

Installation

1) Install ipack and de_PCleNIP kernel modules, see SW manual for the
de_PciNIP.

2) Copy ipack_gen.c, ipack _gen.h (ipack_gen) to your module build
directory. Invoke the system “make.” Alternatively a makefile for ipack_gen has
been included for out of tree kernel module build. If this build method is utilized,
cd to the build directory and invoke the script ./build_all. This script will invoke
the Makefile to build ipack_gen.ko, compile/archive both libipack, libiphv, and
libipctrb as well as building a test applications (ip_loApp, ip_TimerApp, and
ip_1ShotApp).

3) Copy the resulting ipack.ko module to the target platform/directory.

4) Copy the startup script bnm to the target.

5) Invoke the script (./bnm), it will perform an insmod of ipack_gen and
create the required device. The script may be invoked from the systems rc.local
file as well.

Sample applications
libip_pario

The applications ip_ParioApp.c and ip_ParioTmr.c demonstrate proper usage of
library functions/operations for both libipack and libip_pario. As previously
mentioned, the Dynamic Engineering |IP-Parallel-lO modules are employed for
demonstration purposes.

1) The build_all script contained in the build sub directory will compile, and
archive the libraries, compile the sample apps, as well as invoking Make for the
kernel module ipack_gen.ko.

Invocation parameters (ip_ParioApp)

The application can be run either as a single instance (one instance performs
reads and writes), or two instances, one reader, one writer demonstrating
simultaneous module operation.

Sample application invocation is as follows:
Single instance invocation:
Jip_io mod_num b mode (0=TTL, 1=485
Two instances (two terminals)
Jip_io mod_num r mode

0o

w. DYNAMIC
ENGINEERING Embedded Solutions Page 27

Jip_io mod_num w mode

The application expects that a loopback fixture is attached to the IP-PARALLEL-
IO module(s). It validates proper I/O and interrupt generation for all such
modules installed. If the fixture is not attached, the test will fail for that module.

Invocation parameters (ip_ParioTmr)

The application demonstrates proper timer operation

Sample application invocation is as follows:
Jip_pario_tmr_mod_num timer_sel (a or b) period (usec)

libipctrb

The applications ip_Timer.c and ip_1ShotApp.c demonstrates proper usage of
library functions/operations for both libipack and libctrb.

1) The build_all script contained in the build sub directory will compile, and
archive the libraries, compile the sample apps, as well as invoking Make for the
kernel module ipack_gen.ko.

Invocation parameters (ip_TimerApp, ip1ShotApp)

The applications can be run either standalone or in conjunction with a Dynamic
Engineering Test fixture. In standalone mode, only internal clock and triggering
can be demonstrated/validated.

The test fixture generates an external clock, and propagates an external trigger
pulse. If used to validate external trigger functionality, only 1 channel can be
tested at a time. Further, the value EXT_FIXTURE must be defined (top of
source file libipctrb.c) to utilize the external test fixture for external
triggers. In normal operation, EXT_FIXTURE must be undefined or #undef
EXT_FIXTURE.

Application invocation is as follows:

ip_TimerApp invocation:

0o

N DYNAMIC
ENGINEERING Embedded Solutions Page 28

ip_timer mod_num (O=internal|1=external)clock (0O=norm|1=reload)mode
duration(usec) num_chnls(0-7|8, if 8 specified no need to specify
list)channel_list

For example,
ip_timer000100010

The application will exercise the timer functionality on module 0, channel 0
using the internal clock in normal mode with a timer duration of 1 msec.
The application will execute 500,000 iterations by first initiating a timer,
then awaits the corresponding completion interrupt. The app will continue
until until a failure is detected or interrupted with a <CTRL-C>.

ip_timer 00 01000 8
Same test as above, except all 8 channels are executed.

ip_1ShotApp invocation:

ip_1Shot mod_num (O=internal,1=external)clock
trigger(0O=internal|1=external) edgeSel(0=falling|1=rising) num_chnls(1|8)
channel

For example,
ip_1Shot000 110001 7

The application will exercise the 1-shot functionality on module 0, channel
7 using the internal clock, internal trigger, rising edge with a pulse width of
1 msec. The application will execute 500,000 iterations by first initiating a
1-shot, then awaits the corresponding completion interrupt. The app will
continue until until a failure is detected or interrupted with a <CR> from the
shell

Note: 1-shot can be run for all 8 channels as above with the app, however,
only 1 port can be run when specifying external trigger, otherwise the app
will fail.

N DYNAMIC
ENGINEERING Embedded Solutions Page 29

libipsib

The application ip_SibApp.c demonstrates proper usage of library
functions/operations for both libipack and libipsib. This application can exercise
the HW in either USIP/USOP or SDT/SDC mode.

1) The build_all script contained in the build sub directory will compile, and
archive the libraries, compile the sample apps, as well as invoking Make for the
kernel module ipack_gen.ko.

Invocation parameters (ip_SibApp)

The application can only be executed in conjunction with a Dynamic Engineering
Test fixture. One fixture supports SDT/SDC more, the other supports
USIP/USOP. Both channels may be exercised simultaneously in USIP/USOP
mode. Only 1 channel can be run in SDC/SDT mode

The value EXT_FIXTURE must be defined (top of source file libipsib.c) to
utilize the external test fixtures. In normal operation, EXT_FIXTURE must
be undefined or #undef EXT_FIXTURE.

Application invocation is as follows:
ip_sib invocation:
Two instances of the application must be executed per channel. One
instance is the reader and must be started first. The writer instance must
be initiated within 5 seconds:
ip_sib mod_num channel(0|1) reader(1=reader|0=writer)
mode(0=SDT|1=USOP/USIP) cts_polarity(O=active high|1=low) [pkt_len
(1-511 optional)] [num_iterations optional]

For example,

Reader invocation
ip_ sib01100

Writer invocation
ip sib01000

s,

™. DYNAMIC
ENGINEERING Embedded Solutions Page 30

In this example, the applications will execute in USIP/USOP mode on
module 0, channel 1, CTS active high. Since optional parameters are not
specified, default packet length of 256 16 bit words and iteration count of
500000 will be utilized. The reader awaits packet reception and validates
the data received. The applications can be terminated early via <CTRL-

C>

\

DYNAMIC
ENGINEERING Embedded Solutions Page 31

libipopto

The application ip_OptoApp.c demonstrates proper usage of library
functions/operations for both libipack and libipopto. This application can exercise
the HW for both manual and waveform driven FET switching.

1) The build_all script contained in the build sub directory will compile, and archive
the libraries, compile the sample apps, as well as invoking Make for the kernel module
ipack_gen.ko.

Invocation parameters (ip_OptoApp)

The application should be used conjunction with a Dynamic Engineering Test
fixture. This test fixture enables visual confirmation of proper FET switching via
LEDs populating the fixture.

Application invocation is as follows:
ip_opto invocation:

Manual mode validation:
ip_opto 0 m (assuming carrier is populated with one IP-OPTO module)

You should observe each LED cycle on/off beginning with LED 0 (channel
0) every Y2 second. This will continue for 60 iterations or until aborted via
<CTRL-C>.

Waveform mode validation:

ip_opto 0 w 500000 (period in usec)
Maximum period is approximately 134 seconds, minimum period is
10 usec.

Two alternate patterns are executed. Every other LED will be lit for both
patterns. One pattern begins with LEDs 0,2,4,... being waveform driven
Other pattern, LEDs 1,3,5,.. are waveform controlled. LEDs not waveform
driven are disabled. Waveform driven LEDs are cycled on/off twice based
upon the specified period, then the next pattern is executed. This cycle is
repeated 60 iterations or until aborted via <CTRL-C>.

s,

Y. DYNAMIC
ENGINEERING Embedded Solutions Page 32

Support Contract

Dynamic Drivers are provided AS-IS and sometimes our clients need a little help.
Please refer to the support contract page on our website for options about getting
help with your driver use and SW development.

http://www.dyneng.com/TechnicalSupportFromDE.pdf

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected
unit is at fault. Then call the Customer Service Department for a RETURN
MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured with the
RMA number clearly written on the outside of the package. Include a return
address and the telephone number of a technical contact. For out-of-warranty
repairs, a purchase order for repair charges must accompany the return.
Dynamic Engineering will not be responsible for damages due to improper
packaging of returned items. For service on Dynamic Engineering Products not
purchased directly from Dynamic Engineering contact your reseller. Products
returned to Dynamic Engineering for repair by other than the original customer
will be treated as out-of-warranty.

Out of Warranty Repairs

Software support contracts are available to update, add features, change for
different revisions of OS etc. Please contact Dynamic Engineering for these
options.

For Service Contact:

Customer Service Department

Dynamic Engineering

150 DuBois St. Suite C Santa Cruz, CA 95060
831-457-8891

InterNet Address support@dyneng.com

s,

™. DYNAMIC
ENGINEERING Embedded Solutions Page 33

http://www.dyneng.com/TechnicalSupportFromDE.pdf
http://www.dyneng.com/warranty.html
mailto:support@dyneng.com

